Julyan Cartwright: Difference between revisions
m Open access bot: hdl updated in citation with #oabot. |
m Open access bot: hdl updated in citation with #oabot. |
||
Line 26: | Line 26: | ||
He is known for his research<ref>{{Cite web|url=https://scholar.google.com/citations?hl=en&user=V78-fnAAAAAJ|title = Julyan Cartwright - Google Scholar}}</ref> |
He is known for his research<ref>{{Cite web|url=https://scholar.google.com/citations?hl=en&user=V78-fnAAAAAJ|title = Julyan Cartwright - Google Scholar}}</ref> |
||
on how form and pattern emerge in nature,<ref>{{Cite journal|url=https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/syst.202200002|title =Guest Editorial - Chemobrionics and Systems Chemistry|journal =ChemSystemsChem|date =May 2022|volume =4|issue =3|doi =10.1002/syst.202200002|last1 =Čejková|first1 =Jitka|last2 =Cartwright|first2 =Julyan H. E.|s2cid =246779143|doi-access =free}}</ref> the dynamics of natural systems,<ref>{{Cite web|url=http://www.iact.csic.es/personal/julyan_cartwright/cartwright/research.html|title = The dynamics of natural systems}}</ref> across disciplinary boundaries, including his studies of the dynamics of passive scalars in [[chaotic mixing|chaotic advection]] of fluids,<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Feingold | first2=Mario | last3=Piro | first3=Oreste | title=Chaotic advection in three-dimensional unsteady incompressible laminar flow | journal=Journal of Fluid Mechanics | publisher=Cambridge University Press (CUP) | volume=316 | date=1996-06-10 | issn=0022-1120 | doi=10.1017/s0022112096000535 | pages=259–284|arxiv=chao-dyn/9504012| s2cid=930710 }}</ref><ref>{{cite journal | last1=Babiano | first1=Armando | last2=Cartwright | first2=Julyan H. E. | last3=Piro | first3=Oreste | last4=Provenzale | first4=Antonello | title=Dynamics of a Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=84 | issue=25 | date=2000-06-19 | issn=0031-9007 | doi=10.1103/physrevlett.84.5764 | pages=5764–5767| pmid=10991049 |arxiv=nlin/0007033| bibcode=2000PhRvL..84.5764B | s2cid=35884368 }}</ref> [[bailout embedding]]s,<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Magnasco | first2=Marcelo O. | last3=Piro | first3=Oreste | title=Bailout embeddings, targeting of invariant tori, and the control of Hamiltonian chaos | journal=Physical Review E | publisher=American Physical Society (APS) | volume=65 | issue=4 | date=2002-04-03 | issn=1063-651X | doi=10.1103/physreve.65.045203 | page=045203(R)| pmid=12005907 |arxiv=nlin/0111005| bibcode=2002PhRvE..65d5203C | s2cid=23498762 }}</ref> the [[Bogdanov map]],<ref> |
on how form and pattern emerge in nature,<ref>{{Cite journal|url=https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/syst.202200002|title =Guest Editorial - Chemobrionics and Systems Chemistry|journal =ChemSystemsChem|date =May 2022|volume =4|issue =3|doi =10.1002/syst.202200002|last1 =Čejková|first1 =Jitka|last2 =Cartwright|first2 =Julyan H. E.|s2cid =246779143|doi-access =free}}</ref> the dynamics of natural systems,<ref>{{Cite web|url=http://www.iact.csic.es/personal/julyan_cartwright/cartwright/research.html|title = The dynamics of natural systems}}</ref> across disciplinary boundaries, including his studies of the dynamics of passive scalars in [[chaotic mixing|chaotic advection]] of fluids,<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Feingold | first2=Mario | last3=Piro | first3=Oreste | title=Chaotic advection in three-dimensional unsteady incompressible laminar flow | journal=Journal of Fluid Mechanics | publisher=Cambridge University Press (CUP) | volume=316 | date=1996-06-10 | issn=0022-1120 | doi=10.1017/s0022112096000535 | pages=259–284|arxiv=chao-dyn/9504012| s2cid=930710 }}</ref><ref>{{cite journal | last1=Babiano | first1=Armando | last2=Cartwright | first2=Julyan H. E. | last3=Piro | first3=Oreste | last4=Provenzale | first4=Antonello | title=Dynamics of a Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=84 | issue=25 | date=2000-06-19 | issn=0031-9007 | doi=10.1103/physrevlett.84.5764 | pages=5764–5767| pmid=10991049 |arxiv=nlin/0007033| bibcode=2000PhRvL..84.5764B | s2cid=35884368 }}</ref> [[bailout embedding]]s,<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Magnasco | first2=Marcelo O. | last3=Piro | first3=Oreste | title=Bailout embeddings, targeting of invariant tori, and the control of Hamiltonian chaos | journal=Physical Review E | publisher=American Physical Society (APS) | volume=65 | issue=4 | date=2002-04-03 | issn=1063-651X | doi=10.1103/physreve.65.045203 | page=045203(R)| pmid=12005907 |arxiv=nlin/0111005| bibcode=2002PhRvE..65d5203C | s2cid=23498762 }}</ref> the [[Bogdanov map]],<ref> |
||
Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; and Place, C. M. "The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System." Int. J. Bifurcation Chaos 3, 803–842, 1993.</ref> the influence of [[fluid mechanics]] on the development of vertebrate [[left-right asymmetry (biology)|left-right asymmetry]],<ref>{{cite journal | last1=Cartwright | first1=J. H. E. | last2=Piro | first2=O. | last3=Tuval | first3=I. | title=Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates | journal=Proceedings of the National Academy of Sciences | volume=101 | issue=19 | date=2004-04-26 | issn=0027-8424 | doi=10.1073/pnas.0402001101 | pages=7234–7239|pmid=15118088| pmc=409902 | bibcode=2004PNAS..101.7234C | doi-access=free }}</ref> [[self-organization]] of [[biomineralization]] structures of [[mollusc shell]] including mother of pearl ([[nacre]])<ref name='Checa2011'>{{cite journal|doi=10.1016/j.jsb.2011.09.011|pmid=21982842|title=Mineral bridges in nacre|year=2011|last1=Checa|first1=Antonio|last2=Cartwright|first2=Julyan|last3=Willinger|first3=Marc-Georg|journal=Journal of Structural Biology|volume=176|issue=3|pages=330–339}}</ref><ref>Cartwright, J. H. E., Checa, A. G., Escribano, B., & Sainz-Díaz, C. I. (2009). Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal. Proceedings of the National Academy of Sciences, 106(26), 10499-10504.</ref><ref>Cartwright, J. H. E., & Checa, A. G. (2007). The dynamics of nacre self-assembly. Journal of the Royal Society Interface, 4(14), 491-504.</ref> and [[cuttlebone]],<ref>{{Cite journal|last1=Checa|first1=Antonio G.|last2=Cartwright|first2=Julyan H. E.|last3=Sánchez-Almazo|first3=Isabel|last4=Andrade|first4=José P.|last5=Ruiz-Raya|first5=Francisco|date=September 2015|title=The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor|url= |journal=Scientific Reports|language=en|volume=5|issue=1|pages=11513|doi=10.1038/srep11513|issn=2045-2322|pmc=4471886|pmid=26086668| arxiv=1506.08290 | bibcode=2015NatSR...511513C }}</ref> [[excitable media]],<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Eguíluz | first2=Víctor M. | last3=Hernández-García | first3=Emilio | last4=Piro | first4=Oreste | title=Dynamics of Elastic Excitable Media | journal=International Journal of Bifurcation and Chaos | volume=09 | issue=11 | year=1999 | issn=0218-1274 | doi=10.1142/s0218127499001620|arxiv=chao-dyn/9905035 | pages=2197–2202| bibcode=1999IJBC....9.2197C | s2cid=9120223 }}</ref> and chemobrionics:<ref>Silvana S. S. Cardoso, Julyan H. E. Cartwright, Jitka Čejková, Leroy Cronin, Anne De Wit, Simone Giannerini, Dezső Horváth, Alírio Rodrigues, Michael J. Russell, C. Ignacio Sainz-Díaz, Ágota Tóth; Chemobrionics: From Self-Assembled Material Architectures to the Origin of Life. Artif Life 2020; 26 (3): 315–326. doi: https://doi.org/10.1162/artl_a_00323</ref> [[self-assembly|self-assembling]] porous precipitate structures, such as [[chemical gardens]],<ref>{{Cite journal|last1=Barge|first1=Laura M.|last2=Cardoso|first2=Silvana S. S.|last3=Cartwright|first3=Julyan H. E.|last4=Cooper|first4=Geoffrey J. T.|last5=Cronin|first5=Leroy|last6=De Wit|first6=Anne|last7=Doloboff|first7=Ivria J.|last8=Escribano|first8=Bruno|last9=Goldstein|first9=Raymond E.|date=2015-08-26|title=From Chemical Gardens to Chemobrionics|journal=Chemical Reviews|volume=115|issue=16|pages=8652–8703|doi=10.1021/acs.chemrev.5b00014|pmid=26176351|issn=0009-2665|doi-access=free}}</ref> [[brinicle]]s,<ref>{{Cite journal|last=Cartwright J H E, B Escribano, D L González, C I Sainz-Díaz & I Tuval|date=2013|title=Brinicles as a case of inverse chemical gardens|journal=Langmuir|volume=29|issue=25|pages=7655–7660|doi=10.1021/la4009703|pmid=23551166|arxiv=1304.1774|s2cid=207727184}}</ref> and submarine [[hydrothermal vent]]s.<ref>{{Cite journal |url=https://royalsocietypublishing.org/doi/10.1098/rsfs.2019.0104 |title = The origin of life: the submarine alkaline vent theory at 30| year=2019 | doi=10.1098/rsfs.2019.0104 | last1=Cartwright | first1=Julyan H. E. | last2=Russell | first2=Michael J. | journal=Interface Focus | volume=9 | issue=6 | s2cid=204753957 | doi-access=free | hdl=10261/205389 | hdl-access=free }}</ref> |
Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; and Place, C. M. "The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System." Int. J. Bifurcation Chaos 3, 803–842, 1993.</ref> the influence of [[fluid mechanics]] on the development of vertebrate [[left-right asymmetry (biology)|left-right asymmetry]],<ref>{{cite journal | last1=Cartwright | first1=J. H. E. | last2=Piro | first2=O. | last3=Tuval | first3=I. | title=Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates | journal=Proceedings of the National Academy of Sciences | volume=101 | issue=19 | date=2004-04-26 | issn=0027-8424 | doi=10.1073/pnas.0402001101 | pages=7234–7239|pmid=15118088| pmc=409902 | bibcode=2004PNAS..101.7234C | doi-access=free }}</ref> [[self-organization]] of [[biomineralization]] structures of [[mollusc shell]] including mother of pearl ([[nacre]])<ref name='Checa2011'>{{cite journal|doi=10.1016/j.jsb.2011.09.011|pmid=21982842|title=Mineral bridges in nacre|year=2011|last1=Checa|first1=Antonio|last2=Cartwright|first2=Julyan|last3=Willinger|first3=Marc-Georg|journal=Journal of Structural Biology|volume=176|issue=3|pages=330–339}}</ref><ref>Cartwright, J. H. E., Checa, A. G., Escribano, B., & Sainz-Díaz, C. I. (2009). Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal. Proceedings of the National Academy of Sciences, 106(26), 10499-10504.</ref><ref>Cartwright, J. H. E., & Checa, A. G. (2007). The dynamics of nacre self-assembly. Journal of the Royal Society Interface, 4(14), 491-504.</ref> and [[cuttlebone]],<ref>{{Cite journal|last1=Checa|first1=Antonio G.|last2=Cartwright|first2=Julyan H. E.|last3=Sánchez-Almazo|first3=Isabel|last4=Andrade|first4=José P.|last5=Ruiz-Raya|first5=Francisco|date=September 2015|title=The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor|url= |journal=Scientific Reports|language=en|volume=5|issue=1|pages=11513|doi=10.1038/srep11513|issn=2045-2322|pmc=4471886|pmid=26086668| arxiv=1506.08290 | bibcode=2015NatSR...511513C }}</ref> [[excitable media]],<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Eguíluz | first2=Víctor M. | last3=Hernández-García | first3=Emilio | last4=Piro | first4=Oreste | title=Dynamics of Elastic Excitable Media | journal=International Journal of Bifurcation and Chaos | volume=09 | issue=11 | year=1999 | issn=0218-1274 | doi=10.1142/s0218127499001620|arxiv=chao-dyn/9905035 | pages=2197–2202| bibcode=1999IJBC....9.2197C | s2cid=9120223 }}</ref> and chemobrionics:<ref>Silvana S. S. Cardoso, Julyan H. E. Cartwright, Jitka Čejková, Leroy Cronin, Anne De Wit, Simone Giannerini, Dezső Horváth, Alírio Rodrigues, Michael J. Russell, C. Ignacio Sainz-Díaz, Ágota Tóth; Chemobrionics: From Self-Assembled Material Architectures to the Origin of Life. Artif Life 2020; 26 (3): 315–326. doi: https://doi.org/10.1162/artl_a_00323</ref> [[self-assembly|self-assembling]] porous precipitate structures, such as [[chemical gardens]],<ref>{{Cite journal|last1=Barge|first1=Laura M.|last2=Cardoso|first2=Silvana S. S.|last3=Cartwright|first3=Julyan H. E.|last4=Cooper|first4=Geoffrey J. T.|last5=Cronin|first5=Leroy|last6=De Wit|first6=Anne|last7=Doloboff|first7=Ivria J.|last8=Escribano|first8=Bruno|last9=Goldstein|first9=Raymond E.|date=2015-08-26|title=From Chemical Gardens to Chemobrionics|journal=Chemical Reviews|volume=115|issue=16|pages=8652–8703|doi=10.1021/acs.chemrev.5b00014|pmid=26176351|issn=0009-2665|doi-access=free|hdl=20.500.11824/172|hdl-access=free}}</ref> [[brinicle]]s,<ref>{{Cite journal|last=Cartwright J H E, B Escribano, D L González, C I Sainz-Díaz & I Tuval|date=2013|title=Brinicles as a case of inverse chemical gardens|journal=Langmuir|volume=29|issue=25|pages=7655–7660|doi=10.1021/la4009703|pmid=23551166|arxiv=1304.1774|s2cid=207727184}}</ref> and submarine [[hydrothermal vent]]s.<ref>{{Cite journal |url=https://royalsocietypublishing.org/doi/10.1098/rsfs.2019.0104 |title = The origin of life: the submarine alkaline vent theory at 30| year=2019 | doi=10.1098/rsfs.2019.0104 | last1=Cartwright | first1=Julyan H. E. | last2=Russell | first2=Michael J. | journal=Interface Focus | volume=9 | issue=6 | s2cid=204753957 | doi-access=free | hdl=10261/205389 | hdl-access=free }}</ref> |
||
He is among the researchers in the Stanford list of the World's top 2% most cited scientists.<ref>{{Cite journal|url=https://elsevier.digitalcommonsdata.com/datasets/btchxktzyw/3|title = August 2021 data-update for "Updated science-wide author databases of standardized citation indicators"| year=2021 | doi=10.17632/btchxktzyw.3 | author1=Jeroen Baas | last2=Boyack | first2=Kevin | last3=Ioannidis | first3=John P. A. | volume=3 | publisher=Elsevier BV }}</ref><ref>{{Cite web|url= |
He is among the researchers in the Stanford list of the World's top 2% most cited scientists.<ref>{{Cite journal|url=https://elsevier.digitalcommonsdata.com/datasets/btchxktzyw/3|title = August 2021 data-update for "Updated science-wide author databases of standardized citation indicators"| year=2021 | doi=10.17632/btchxktzyw.3 | author1=Jeroen Baas | last2=Boyack | first2=Kevin | last3=Ioannidis | first3=John P. A. | volume=3 | publisher=Elsevier BV }}</ref><ref>{{Cite web|url= |
Revision as of 01:07, 6 January 2024
Julyan Cartwright | |
---|---|
Born | |
Citizenship | British |
Alma mater | University of Newcastle upon Tyne, Queen Mary College, University of London |
Scientific career | |
Fields | dynamical systems, nonlinear science, complexity, pattern formation |
Institutions | CSIC (Spanish National Research Council) |
Doctoral advisor | David Arrowsmith[1] |
Other academic advisors | Ian C. Percival, Keith Runcorn, David Tritton |
Julyan Cartwright is an interdisciplinary physicist working in Granada, Spain at the Andalusian Earth Sciences Institute[3] of the CSIC (Spanish National Research Council) and affiliated with the Carlos I Institute of Theoretical and Computational Physics[4] at the University of Granada.
He is known for his research[5] on how form and pattern emerge in nature,[6] the dynamics of natural systems,[7] across disciplinary boundaries, including his studies of the dynamics of passive scalars in chaotic advection of fluids,[8][9] bailout embeddings,[10] the Bogdanov map,[11] the influence of fluid mechanics on the development of vertebrate left-right asymmetry,[12] self-organization of biomineralization structures of mollusc shell including mother of pearl (nacre)[13][14][15] and cuttlebone,[16] excitable media,[17] and chemobrionics:[18] self-assembling porous precipitate structures, such as chemical gardens,[19] brinicles,[20] and submarine hydrothermal vents.[21]
He is among the researchers in the Stanford list of the World's top 2% most cited scientists.[22][23] He is chair of the international COST action Chemobionics[24] and chair of the scientific advisory committee to the international conference Dynamics Days Europe.[25] He is editor of the Cambridge University Press journal Elements in Dynamical Systems.[26]
Press interest in his research has highlighted his work on chemical gardens,[27][28] on pitch perception in the auditory system,[29][30] on how symmetry is broken so that the heart is on the left,[31][32] on how bees construct spiral bee combs,[33][34][35] on the formation of nacre[36] and pearls,[37][38][39][40][41] on how brinicle ice tubes grow both on Earth[42][43][44] and on Jupiter's moon, Europa,[45] on the information content of complex self-assembled materials[46][47][48][49] on the rogue wave[50] nature of Hokusai's famous artwork the Great Wave off Kanagawa,[51][52][53] on the Möbius strip before Möbius,[54][55] on the possible melting of oceanic methane hydrate deposits owing to climate change,[56] and on the origin of life at alkaline submarine hydrothermal vents[57] and their relevance to astrobiology.[58]
References
- ^ Julyan Cartwright at the Mathematics Genealogy Project
- ^ "Julyan Cartwright - Personal history".
- ^ "IACT Staff - Julyan Cartwright".
- ^ "List of members of the iC1".
- ^ "Julyan Cartwright - Google Scholar".
- ^ Čejková, Jitka; Cartwright, Julyan H. E. (May 2022). "Guest Editorial - Chemobrionics and Systems Chemistry". ChemSystemsChem. 4 (3). doi:10.1002/syst.202200002. S2CID 246779143.
- ^ "The dynamics of natural systems".
- ^ Cartwright, Julyan H. E.; Feingold, Mario; Piro, Oreste (1996-06-10). "Chaotic advection in three-dimensional unsteady incompressible laminar flow". Journal of Fluid Mechanics. 316. Cambridge University Press (CUP): 259–284. arXiv:chao-dyn/9504012. doi:10.1017/s0022112096000535. ISSN 0022-1120. S2CID 930710.
- ^ Babiano, Armando; Cartwright, Julyan H. E.; Piro, Oreste; Provenzale, Antonello (2000-06-19). "Dynamics of a Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems". Physical Review Letters. 84 (25). American Physical Society (APS): 5764–5767. arXiv:nlin/0007033. Bibcode:2000PhRvL..84.5764B. doi:10.1103/physrevlett.84.5764. ISSN 0031-9007. PMID 10991049. S2CID 35884368.
- ^ Cartwright, Julyan H. E.; Magnasco, Marcelo O.; Piro, Oreste (2002-04-03). "Bailout embeddings, targeting of invariant tori, and the control of Hamiltonian chaos". Physical Review E. 65 (4). American Physical Society (APS): 045203(R). arXiv:nlin/0111005. Bibcode:2002PhRvE..65d5203C. doi:10.1103/physreve.65.045203. ISSN 1063-651X. PMID 12005907. S2CID 23498762.
- ^ Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; and Place, C. M. "The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System." Int. J. Bifurcation Chaos 3, 803–842, 1993.
- ^ Cartwright, J. H. E.; Piro, O.; Tuval, I. (2004-04-26). "Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates". Proceedings of the National Academy of Sciences. 101 (19): 7234–7239. Bibcode:2004PNAS..101.7234C. doi:10.1073/pnas.0402001101. ISSN 0027-8424. PMC 409902. PMID 15118088.
- ^ Checa, Antonio; Cartwright, Julyan; Willinger, Marc-Georg (2011). "Mineral bridges in nacre". Journal of Structural Biology. 176 (3): 330–339. doi:10.1016/j.jsb.2011.09.011. PMID 21982842.
- ^ Cartwright, J. H. E., Checa, A. G., Escribano, B., & Sainz-Díaz, C. I. (2009). Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal. Proceedings of the National Academy of Sciences, 106(26), 10499-10504.
- ^ Cartwright, J. H. E., & Checa, A. G. (2007). The dynamics of nacre self-assembly. Journal of the Royal Society Interface, 4(14), 491-504.
- ^ Checa, Antonio G.; Cartwright, Julyan H. E.; Sánchez-Almazo, Isabel; Andrade, José P.; Ruiz-Raya, Francisco (September 2015). "The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor". Scientific Reports. 5 (1): 11513. arXiv:1506.08290. Bibcode:2015NatSR...511513C. doi:10.1038/srep11513. ISSN 2045-2322. PMC 4471886. PMID 26086668.
- ^ Cartwright, Julyan H. E.; Eguíluz, Víctor M.; Hernández-García, Emilio; Piro, Oreste (1999). "Dynamics of Elastic Excitable Media". International Journal of Bifurcation and Chaos. 09 (11): 2197–2202. arXiv:chao-dyn/9905035. Bibcode:1999IJBC....9.2197C. doi:10.1142/s0218127499001620. ISSN 0218-1274. S2CID 9120223.
- ^ Silvana S. S. Cardoso, Julyan H. E. Cartwright, Jitka Čejková, Leroy Cronin, Anne De Wit, Simone Giannerini, Dezső Horváth, Alírio Rodrigues, Michael J. Russell, C. Ignacio Sainz-Díaz, Ágota Tóth; Chemobrionics: From Self-Assembled Material Architectures to the Origin of Life. Artif Life 2020; 26 (3): 315–326. doi: https://doi.org/10.1162/artl_a_00323
- ^ Barge, Laura M.; Cardoso, Silvana S. S.; Cartwright, Julyan H. E.; Cooper, Geoffrey J. T.; Cronin, Leroy; De Wit, Anne; Doloboff, Ivria J.; Escribano, Bruno; Goldstein, Raymond E. (2015-08-26). "From Chemical Gardens to Chemobrionics". Chemical Reviews. 115 (16): 8652–8703. doi:10.1021/acs.chemrev.5b00014. hdl:20.500.11824/172. ISSN 0009-2665. PMID 26176351.
- ^ Cartwright J H E, B Escribano, D L González, C I Sainz-Díaz & I Tuval (2013). "Brinicles as a case of inverse chemical gardens". Langmuir. 29 (25): 7655–7660. arXiv:1304.1774. doi:10.1021/la4009703. PMID 23551166. S2CID 207727184.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Cartwright, Julyan H. E.; Russell, Michael J. (2019). "The origin of life: the submarine alkaline vent theory at 30". Interface Focus. 9 (6). doi:10.1098/rsfs.2019.0104. hdl:10261/205389. S2CID 204753957.
- ^ Jeroen Baas; Boyack, Kevin; Ioannidis, John P. A. (2021). "August 2021 data-update for "Updated science-wide author databases of standardized citation indicators"". 3. Elsevier BV. doi:10.17632/btchxktzyw.3.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ "La lista completa de los investigadores más destacados de la Universidad de Granada".
- ^ "Chemobrionics - COST".
- ^ "European Dynamics Days".
- ^ "Elements in Dynamical Systems".
- ^ "Recent research provides new data on chemical gardens, whose formation is a mystery for science".
- ^ "Philip Ball considers the vegetative soul of an inorganic woodland".
- ^ Ball, Philip (1999). "Pump up the bass". Nature. doi:10.1038/news990708-7.
- ^ "A pitch for decoding frequency more simply".
- ^ Wells, William A. (2004). "Tilt back to turn left". Journal of Cell Biology. 165 (4): 456. doi:10.1083/jcb1654rr1. PMC 2249968.
- ^ "Broken Symmetry". 11 September 2009.
- ^ "Scientists Crack the Mathematical Mystery of Stingless Bees' Spiral Honeycombs".
- ^ "Scientists Find These Stunning Spiral Beehives Have a Lot in Common With Crystals".
- ^ "Strange, spiral bee combs look like fantastical crystal palaces. Now we know why". Live Science. 22 July 2020.
- ^ "Mother-of-pearl From Shells Could Inspire Regeneration of Human Bones".
- ^ "Pearls and the Puzzle of How They Form Perfect Spheres".
- ^ "Pearly perfection".
- ^ "Micro-ratchet spins pearls with perfect symmetry".
- ^ "Researchers Try to Explain How Perfect Pearls Form".
- ^ "How pearls get their round shape".
- ^ Marlow, Jeffrey. "Swimming Beneath the Brinicles, in Antarctica". Wired.
- ^ "Ice tubes in polar seas -- 'brinicles' or 'sea stalactites' -- provide clues to origin of life".
- ^ "Brinicles and the Origin of Life".
- ^ "Self-Assembling Ice Membranes on Europa – Astrobiology".
- ^ "Crystals, Information And The Origin of Life".
- ^ Ball, Philip (2012). "Bringing crystals to life". Nature Materials. 11 (10): 840. doi:10.1038/nmat3437. PMID 23001232.
- ^ Buchanan, Mark (2012). "Instructions for assembly". Nature Physics. 8 (8): 577. Bibcode:2012NatPh...8..577B. doi:10.1038/nphys2393. S2CID 122568730.
- ^ Ball, Philip (2014). "Beyond the crystal". Nature Materials. 13 (11): 1003. doi:10.1038/nmat4122. PMID 25342529.
- ^ "When Good Waves Go Rogue". 25 June 2014.
- ^ "Recreating monster waves in art and science".
- ^ "Hokusai Under the Wave off Kanagawa".
- ^ "Der anstößige Superstar".
- ^ "Scoperta la più antica raffigurazione del nastro di Moebius".
- ^ "Escher, il nastro di Möbius e gli idiot savant: fin dove si può arrivare col pensiero?". 7 December 2021.
- ^ "3.5 percent of global methane deposits could be melted by 2100 due to climate change".
- ^ "Expertos internacionales debaten en Granada los últimos avances científicos relacionados con el origen de la vida". 12 March 2019.
- ^ "Search for origin of life reaches interstellar dust".