Jump to content

Tauopathy: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
MiaSH (talk | contribs)
Removed an unnessesary part
MiaSH (talk | contribs)
Chanced the structure of the text and added some information
Line 25: Line 25:
}}
}}


'''Tauopathy''' belongs to a class of [[neurodegenerative disease]]s involving the aggregation of [[tau protein]] into neurofibrillary or gliofibrillary [[Neurofibrillary tangle|tangles]] in the human brain. Tangles are formed by [[phosphorylation|hyperphosphorylation]] of the [[microtubule]] protein known as tau, causing the protein to dissociate from microtubules and form insoluble aggregates.<ref name=":3">{{cite journal | vauthors = Goedert M, Spillantini MG | title = Propagation of Tau aggregates | journal = Molecular Brain | volume = 10 | issue = 1 | pages = 18 | date = May 2017 | pmid = 28558799 | pmc = 5450399 | doi = 10.1186/s13041-017-0298-7 | doi-access = free }}</ref> (These aggregations are also called '''paired helical filaments'''.) The mechanism of tangle formation is not well understood, and whether tangles are a primary cause of [[Alzheimer's disease]] or play a peripheral role is unknown.


'''Tauopathies''' are neurodegenerative diseases involving the aggregation of abnormal tau protein (also called tubulin associated unit, or microtubule-associated protein tau (MAPT))<ref>{{cite journal |last1=Kovacs |first1=Gabor G. |title=Chapter 25 - Tauopathies |journal=Handbook of Clinical Neurology |date=1 January 2018 |volume=145 |page=355-368 |pages=355–368 |doi=https://doi.org/10.1016/B978-0-12-802395-2.00025-0 |url=https://www.sciencedirect.com/science/article/pii/B9780128023952000250}}</ref>. Tangles are formed by hyperphosphorylation of the microtubule protein known as tau, causing the protein to dissociate from microtubules and form insoluble aggregate <ref name=":3">{{cite journal | vauthors = Goedert M, Spillantini MG | title = Propagation of Tau aggregates | journal = Molecular Brain | volume = 10 | issue = 1 | pages = 18 | date = May 2017 | pmid = 28558799 | pmc = 5450399 | doi = 10.1186/s13041-017-0298-7 | doi-access = free }}</ref>. Various neuropathologic phenotypes are identified based on the specific engagement of anatomical regions, cell types, and the presence of unique isoforms of tau within pathological deposits. The designation 'primary tauopathy' is assigned to disorders where the predominant feature is the deposition of tau protein. Alternatively, diseases exhibiting tau pathologies attributed to different and varied underlying causes are termed 'secondary tauopathies<ref>{{cite journal |last1=Kovacs |first1=Gabor G. |title=Chapter 25 - Tauopathies |journal=Handbook of Clinical Neurology |date=1 January 2018 |volume=145 |pages=355–368 |doi=https://doi.org/10.1016/B978-0-12-802395-2.00025-0}}</ref>. Some neuropathologic phenotypes involving tau protein is Alzheimer’s disease, Pick disease, Progressive supranuclear palsy and corticobasal degeneration<ref>{{cite journal |last1=Kovacs |first1=Gabor G. |title=Chapter 25 - Tauopathies |journal=Handbook of Clinical Neurology |date=1 January 2018 |volume=145 |page=355-368 |pages=355–368 |doi=https://doi.org/10.1016/B978-0-12-802395-2.00025-0 |url=https://www.sciencedirect.com/science/article/pii/B9780128023952000250 |publisher=Elsevier}}</ref>.
== Alzheimer's disease ==
[[File:Tauopathy in Alzheimer's disease.jpg|thumb|Abnormal accumulation of [[tau protein]] in [[neuron]]al cell bodies (arrow) and neuronal extensions (arrowhead) in the [[neocortex]] of a patient who died with Alzheimer's disease. The bar = 25 microns (0.025 millimeters).]]
Neurofibrillary tangles were first described by [[Alois Alzheimer]] in one of his patients with [[Alzheimer's disease]] (AD). The tangles are considered a secondary tauopathy. AD is also classified as an [[amyloidosis]] because of the presence of [[senile plaques]].<ref name="ReferenceA">{{cite journal | vauthors = Dickson DW | title = Neuropathology of non-Alzheimer degenerative disorders | journal = International Journal of Clinical and Experimental Pathology | volume = 3 | issue = 1 | pages = 1–23 | date = August 2009 | pmid = 19918325 | pmc = 2776269 }}</ref>


==Tau Protein==
When tau becomes hyperphosphorylated, the protein dissociates from the microtubules in axons.<ref>{{cite journal | vauthors = Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K | title = Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration | journal = Journal of Alzheimer's Disease | volume = 33 | pages = S123-39 | date = 2013 | issue = Suppl 1 | pmid = 22710920 | doi = 10.3233/JAD-2012-129031 }}</ref> Then, tau becomes misfolded and the protein begins to aggregate, which eventually forms the neurofibrillary tangles (NFT) seen in Alzheimer's patients.<ref name=":3" /> Microtubules also destabilize when tau is dissociated. The combination of the neurofibrillary tangles and destabilized microtubules result in disruption of processes such as axonal transport and neural communication.<ref>{{cite journal | vauthors = Wang Y, Mandelkow E | title = Tau in physiology and pathology | journal = Nature Reviews. Neuroscience | volume = 17 | issue = 1 | pages = 5–21 | date = January 2016 | pmid = 26631930 | doi = 10.1038/nrn.2015.1 | s2cid = 30614958 }}</ref>
[[Tau protein]] is a microtubule-associated protein that promotes polymerization and stabilization into microtubules by binding to tubulin. Variants of Tau isoforms, spanning from 352 to 441 amino acids, arise through the alternative splicing of exons 2,3 and 10 within the MAPT gene. The six isoforms are differentiated by the inclusion and exclusion of inserts of either 29 or 58 amino acids in the N-terminus domain. Furthermore, the isoforms are categorized based on the presence of either three (3R tau isoforms) or four (4R tau isoforms) tandem repeat sequences each consisting of 31 or 32 amino acids<ref>{{cite journal |last1=Goedert |first1=M. |last2=Spillantini |first2=M.G. |last3=Jakes |first3=R. |last4=Rutherford |first4=D. |last5=Crowther |first5=R.A. |title=Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease |journal=Neuron |date=October 1989 |volume=3 |issue=4 |pages=519–526 |doi=https://doi.org/https://doi.org/10.1016/0896-6273(89)90210-9}}</ref>.


==Biomarkers for Tauopathies==
The degree of NFT involvement in AD is defined by [[Braak staging|Braak stages]]. Braak stages I and II are used when NFT involvement is confined mainly to the transentorhinal region of the brain, stages III and IV when there is also involvement of [[limbic]] regions such as the [[hippocampus]], and V and VI when there's extensive neocortical involvement. This should not be confused with the degree of senile plaque involvement, which progresses differently.<ref>{{cite journal | vauthors = Braak H, Braak E | title = Neuropathological stageing of Alzheimer-related changes | journal = Acta Neuropathologica | volume = 82 | issue = 4 | pages = 239–59 | year = 1991 | pmid = 1759558 | doi = 10.1007/BF00308809 | s2cid = 668690 }}</ref>
===Neuroimaging===
[[Positron emission tomography]] (PET) is one type of biomarker which is capable of identify patient with elevated levels of tau at patient with Alzheimers disease. PET is a great tool which can supplement information such as various regions having higher neuropathologic burden than others. But it needs to be eligible, and more positive outcome than negative, such as exposure to radioactivity<ref>{{cite journal |last1=Moloney |first1=Christina M. |last2=Labuzan |first2=Sydney A. |last3=Crook |first3=Julia E. |last4=Siddiqui |first4=Habeeba |last5=Castanedes‐Casey |first5=Monica |last6=Lachner |first6=Christian |last7=Petersen |first7=Ronald C. |last8=Duara |first8=Ranjan |last9=Graff‐Radford |first9=Neill R. |last10=Dickson |first10=Dennis W. |last11=Mielke |first11=Michelle M. |last12=Murray |first12=Melissa E. |title=Phosphorylated tau sites that are elevated in Alzheimer's disease fluid biomarkers are visualized in early neurofibrillary tangle maturity levels in the post mortem brain |journal=Alzheimer's & Dementia |date=March 2023 |volume=19 |issue=3 |pages=1029–1040 |doi=10.1002/alz.12749 |url=https://alz-journals.onlinelibrary.wiley.com/doi/epdf/10.1002/alz.12749 |language=en |issn=1552-5260}}</ref>.

===Biofluid===
The analysis of [[Cerebrospinal fluid|cerebrospinal fluid]] (CSF) represents a potential avenue for the development of [[Biomarker|biomarkers]] in tauopathies. Substantial data on CSF biomarkers is available for Alzheimer's disease (AD), focusing on measures related to total and phosphorylated forms of tau and amyloid-beta (Aβ) protein. Elevated CSF tau and decreased Aβ levels constitute the characteristic CSF signature of AD, allowing differentiation from controls <ref>{{cite journal |last1=Shaw |first1=Leslie M. |last2=Vanderstichele |first2=Hugo |last3=Knapik‐Czajka |first3=Malgorzata |last4=Clark |first4=Christopher M. |last5=Aisen |first5=Paul S. |last6=Petersen |first6=Ronald C. |last7=Blennow |first7=Kaj |last8=Soares |first8=Holly |last9=Simon |first9=Adam |last10=Lewczuk |first10=Piotr |last11=Dean |first11=Robert |last12=Siemers |first12=Eric |last13=Potter |first13=William |last14=Lee |first14=Virginia M.‐Y. |last15=Trojanowski |first15=John Q. |title=Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects |journal=Annals of Neurology |date=April 2009 |volume=65 |issue=4 |pages=403–413 |doi=https://doi.org/10.1002/ana.21610}}</ref>. This signature may also assist in distinguishing atypical forms of AD pathology associated with clinical frontotemporal dementia (FTD) from those with underlying frontotemporal lobar degeneration (FTLD)-Tau pathology<ref>{{cite journal |last1=Shaw |first1=Leslie M. |last2=Vanderstichele |first2=Hugo |last3=Knapik‐Czajka |first3=Malgorzata |last4=Clark |first4=Christopher M. |last5=Aisen |first5=Paul S. |last6=Petersen |first6=Ronald C. |last7=Blennow |first7=Kaj |last8=Soares |first8=Holly |last9=Simon |first9=Adam |last10=Lewczuk |first10=Piotr |last11=Dean |first11=Robert |last12=Siemers |first12=Eric |last13=Potter |first13=William |last14=Lee |first14=Virginia M.‐Y. |last15=Trojanowski |first15=John Q. |title=Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects |journal=Annals of Neurology |date=April 2009 |volume=65 |issue=4 |pages=403–413 |doi=https://doi.org/10.1002/ana.21610}}</ref>.

==Alzheimer’s Disease==
[[Alzheimer's disease|Alzheimer's Disease]] (AD) is clinically characterized by a progressive decline in memory and cognitive functions, leading to severe dementia. Microscopically, AD is identified by the presence of two types of insoluble fibrous materials: (1) extracellular amyloid (Aß) protein forming senile plaques and (2) intracellular neurofibrillary lesions (NFL) composed of abnormally and hyperphosphorylated tau protein. While AD is not strictly considered a prototypical tauopathy, as tau pathology coexists with Aß protein deposition, the 'amyloid cascade hypothesis' posits that Aß accumulation is the primary factor driving AD pathogenesis<ref>{{cite journal |last1=Hardy |first1=John |last2=Selkoe |first2=Dennis J. |title=The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics |journal=Science |date=19 July 2002 |volume=297 |issue=5580 |pages=353–356 |doi=DOI: 10.1126/science.1072994}}</ref> <ref>{{cite journal |last1=Nussbaum |first1=Robert L. |last2=Ellis |first2=Christopher E. |title=Alzheimer's Disease and Parkinson's Disease |journal=New England Journal of Medicine |date=3 April 2003 |volume=348 |issue=14 |pages=1356–1364 |doi=https://doi.org/10.1056/NEJM2003ra020003}}</ref>.Nevertheless, AD neurofibrillary lesions were the first to undergo ultrastructural and biochemical analysis, thus laying the foundation for in-depth studies on tau protein deposition in various tauopathies<ref>{{cite journal |last1=Tolnay |first1=Markus |last2=Probst |first2=Alphonse |title=The Neuropathological Spectrum of Neurodegenerative Tauopathies |journal=IUBMB Life |date=June 2003 |volume=55 |issue=6 |pages=299–305 |doi=https://doi.org/10.1080/1521654032000114348}}</ref>

==Neuropathologic Phenotypes==

===Pick Disease (PiD)===
[[Frontotemporal dementia|Pick disease]] (PiD) is a part of a diverse spectrum of disorders clinically marked by dysfunction in the frontal and temporal lobes, collectively referred to as frontotemporal lobar degeneration (FTLD). The primary histological characteristics include profound neuronal loss, enlarged neurons, and distinctive spherical argyrophilic inclusions known as Pick bodies (PBs). These PBs primarily consist of hyperphosphorylated tau protein, with tau protein presenting as two major bands at 60 and 64 kDa and a variable, minor band at 69 kDa. Filamentous tau deposits in nerve cells are predominantly composed of 3R tau isoforms<ref>{{cite journal |last1=Tolnay |first1=Markus |last2=Probst |first2=Alphonse |title=The Neuropathological Spectrum of Neurodegenerative Tauopathies |journal=IUBMB Life |date=June 2003 |volume=55 |issue=6 |pages=299–305 |doi=https://doi.org/10.1080/1521654032000114348}}</ref>

===Progressive Supranuclear Palsy (PSP)===
[[Progressive Supranuclear Palsy]] (PSP) is a type of tauopathy, but the cause is not yet discovered. For PSP an unusual phosphorylation for tauprotein causes vital protein filament in the nerve cells to destruct, a phenomenon called “neurofibrillary” degeneration. Typical symptoms of PSP would be abnormal speech, balance impairment and over cognitive and memory impairment. As CBD, PSP is also classified as a 4R tauopathy, and because of that PSP will often be selected for trials regarding anti-tau therapeutics<ref>{{cite web |last1=Coughlin |first1=David G. |last2=Litvan |first2=Irene |title=Progressive supranuclear palsy: Advances in diagnosis and management |url=https://doi.org/10.1016/j.parkreldis.2020.04.014 |website=Parkinsonism &amp; Related Disorders |pages=105–116 |doi=10.1016/j.parkreldis.2020.04.014 |date=April 2020}}</ref> .

===Corticobasal Degeneration (CBD)===
[[Corticobasal degeneration]] (CBD) is an increasingly acknowledged neurodegenerative disorder characterized by both motor and cognitive dysfunction. In affected regions, histological examination reveals pronounced neuronal loss accompanied by spongiosis and gliosis, cortical ballooned cells, and notable intracytoplasmic filamentous tau pathology in both glial and neuronal cells. Biochemically, the distinctive tau profile in CBD cases manifests as a prominent tau doublet at 64 and 68 kDa, which is variably identified. These bands predominantly consist of hyperphosphorylated 4R tau isoforms, leading to the classification of CBD as a 4R tauopathy<ref>{{cite journal |last1=Tolnay |first1=Markus |last2=Probst |first2=Alphonse |title=The Neuropathological Spectrum of Neurodegenerative Tauopathies |journal=IUBMB Life |date=June 2003 |volume=55 |issue=6 |pages=299–305 |doi=https://doi.org/10.1080/1521654032000114348}}</ref>.


== Other diseases ==
== Other diseases ==

Revision as of 15:34, 14 February 2024

Tauopathy
Diagram of a normal microtubule and one affected by tauopathy
SpecialtyNeurology Edit this on Wikidata


Tauopathies are neurodegenerative diseases involving the aggregation of abnormal tau protein (also called tubulin associated unit, or microtubule-associated protein tau (MAPT))[1]. Tangles are formed by hyperphosphorylation of the microtubule protein known as tau, causing the protein to dissociate from microtubules and form insoluble aggregate [2]. Various neuropathologic phenotypes are identified based on the specific engagement of anatomical regions, cell types, and the presence of unique isoforms of tau within pathological deposits. The designation 'primary tauopathy' is assigned to disorders where the predominant feature is the deposition of tau protein. Alternatively, diseases exhibiting tau pathologies attributed to different and varied underlying causes are termed 'secondary tauopathies[3]. Some neuropathologic phenotypes involving tau protein is Alzheimer’s disease, Pick disease, Progressive supranuclear palsy and corticobasal degeneration[4].

Tau Protein

Tau protein is a microtubule-associated protein that promotes polymerization and stabilization into microtubules by binding to tubulin. Variants of Tau isoforms, spanning from 352 to 441 amino acids, arise through the alternative splicing of exons 2,3 and 10 within the MAPT gene. The six isoforms are differentiated by the inclusion and exclusion of inserts of either 29 or 58 amino acids in the N-terminus domain. Furthermore, the isoforms are categorized based on the presence of either three (3R tau isoforms) or four (4R tau isoforms) tandem repeat sequences each consisting of 31 or 32 amino acids[5].

Biomarkers for Tauopathies

Neuroimaging

Positron emission tomography (PET) is one type of biomarker which is capable of identify patient with elevated levels of tau at patient with Alzheimers disease. PET is a great tool which can supplement information such as various regions having higher neuropathologic burden than others. But it needs to be eligible, and more positive outcome than negative, such as exposure to radioactivity[6].

Biofluid

The analysis of cerebrospinal fluid (CSF) represents a potential avenue for the development of biomarkers in tauopathies. Substantial data on CSF biomarkers is available for Alzheimer's disease (AD), focusing on measures related to total and phosphorylated forms of tau and amyloid-beta (Aβ) protein. Elevated CSF tau and decreased Aβ levels constitute the characteristic CSF signature of AD, allowing differentiation from controls [7]. This signature may also assist in distinguishing atypical forms of AD pathology associated with clinical frontotemporal dementia (FTD) from those with underlying frontotemporal lobar degeneration (FTLD)-Tau pathology[8].

Alzheimer’s Disease

Alzheimer's Disease (AD) is clinically characterized by a progressive decline in memory and cognitive functions, leading to severe dementia. Microscopically, AD is identified by the presence of two types of insoluble fibrous materials: (1) extracellular amyloid (Aß) protein forming senile plaques and (2) intracellular neurofibrillary lesions (NFL) composed of abnormally and hyperphosphorylated tau protein. While AD is not strictly considered a prototypical tauopathy, as tau pathology coexists with Aß protein deposition, the 'amyloid cascade hypothesis' posits that Aß accumulation is the primary factor driving AD pathogenesis[9] [10].Nevertheless, AD neurofibrillary lesions were the first to undergo ultrastructural and biochemical analysis, thus laying the foundation for in-depth studies on tau protein deposition in various tauopathies[11]

Neuropathologic Phenotypes

Pick Disease (PiD)

Pick disease (PiD) is a part of a diverse spectrum of disorders clinically marked by dysfunction in the frontal and temporal lobes, collectively referred to as frontotemporal lobar degeneration (FTLD). The primary histological characteristics include profound neuronal loss, enlarged neurons, and distinctive spherical argyrophilic inclusions known as Pick bodies (PBs). These PBs primarily consist of hyperphosphorylated tau protein, with tau protein presenting as two major bands at 60 and 64 kDa and a variable, minor band at 69 kDa. Filamentous tau deposits in nerve cells are predominantly composed of 3R tau isoforms[12]

Progressive Supranuclear Palsy (PSP)

Progressive Supranuclear Palsy (PSP) is a type of tauopathy, but the cause is not yet discovered. For PSP an unusual phosphorylation for tauprotein causes vital protein filament in the nerve cells to destruct, a phenomenon called “neurofibrillary” degeneration. Typical symptoms of PSP would be abnormal speech, balance impairment and over cognitive and memory impairment. As CBD, PSP is also classified as a 4R tauopathy, and because of that PSP will often be selected for trials regarding anti-tau therapeutics[13] .

Corticobasal Degeneration (CBD)

Corticobasal degeneration (CBD) is an increasingly acknowledged neurodegenerative disorder characterized by both motor and cognitive dysfunction. In affected regions, histological examination reveals pronounced neuronal loss accompanied by spongiosis and gliosis, cortical ballooned cells, and notable intracytoplasmic filamentous tau pathology in both glial and neuronal cells. Biochemically, the distinctive tau profile in CBD cases manifests as a prominent tau doublet at 64 and 68 kDa, which is variably identified. These bands predominantly consist of hyperphosphorylated 4R tau isoforms, leading to the classification of CBD as a 4R tauopathy[14].

Other diseases

Argyrophilic grain disease (AGD), another type of dementia,[28][29][30] is marked by an abundance of argyrophilic grains and coiled bodies upon microscopic examination of brain tissue.[31] Some consider it to be a type of Alzheimer's disease.[31] It may co-exist with other tauopathies such as progressive supranuclear palsy and corticobasal degeneration,[15] and also Pick's disease.[32]

Tauopathies are often overlapped with synucleinopathies, possibly due to interaction between the synuclein and tau proteins.[33]

The non-Alzheimer's tauopathies are sometimes grouped together as "Pick's complex" due to their association with frontotemporal dementia, or frontotemporal lobar degeneration.[34]


See also

References

  1. ^ Kovacs, Gabor G. (1 January 2018). "Chapter 25 - Tauopathies". Handbook of Clinical Neurology. 145: 355-368. doi:https://doi.org/10.1016/B978-0-12-802395-2.00025-0. {{cite journal}}: Check |doi= value (help); External link in |doi= (help); More than one of |pages= and |page= specified (help)
  2. ^ Goedert M, Spillantini MG (May 2017). "Propagation of Tau aggregates". Molecular Brain. 10 (1): 18. doi:10.1186/s13041-017-0298-7. PMC 5450399. PMID 28558799.
  3. ^ Kovacs, Gabor G. (1 January 2018). "Chapter 25 - Tauopathies". Handbook of Clinical Neurology. 145: 355–368. doi:https://doi.org/10.1016/B978-0-12-802395-2.00025-0. {{cite journal}}: Check |doi= value (help); External link in |doi= (help)
  4. ^ Kovacs, Gabor G. (1 January 2018). "Chapter 25 - Tauopathies". Handbook of Clinical Neurology. 145. Elsevier: 355-368. doi:https://doi.org/10.1016/B978-0-12-802395-2.00025-0. {{cite journal}}: Check |doi= value (help); External link in |doi= (help); More than one of |pages= and |page= specified (help)
  5. ^ Goedert, M.; Spillantini, M.G.; Jakes, R.; Rutherford, D.; Crowther, R.A. (October 1989). "Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease". Neuron. 3 (4): 519–526. doi:https://doi.org/https://doi.org/10.1016/0896-6273(89)90210-9. {{cite journal}}: Check |doi= value (help); External link in |doi= (help)
  6. ^ Moloney, Christina M.; Labuzan, Sydney A.; Crook, Julia E.; Siddiqui, Habeeba; Castanedes‐Casey, Monica; Lachner, Christian; Petersen, Ronald C.; Duara, Ranjan; Graff‐Radford, Neill R.; Dickson, Dennis W.; Mielke, Michelle M.; Murray, Melissa E. (March 2023). "Phosphorylated tau sites that are elevated in Alzheimer's disease fluid biomarkers are visualized in early neurofibrillary tangle maturity levels in the post mortem brain". Alzheimer's & Dementia. 19 (3): 1029–1040. doi:10.1002/alz.12749. ISSN 1552-5260.
  7. ^ Shaw, Leslie M.; Vanderstichele, Hugo; Knapik‐Czajka, Malgorzata; Clark, Christopher M.; Aisen, Paul S.; Petersen, Ronald C.; Blennow, Kaj; Soares, Holly; Simon, Adam; Lewczuk, Piotr; Dean, Robert; Siemers, Eric; Potter, William; Lee, Virginia M.‐Y.; Trojanowski, John Q. (April 2009). "Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects". Annals of Neurology. 65 (4): 403–413. doi:https://doi.org/10.1002/ana.21610. {{cite journal}}: Check |doi= value (help); External link in |doi= (help)
  8. ^ Shaw, Leslie M.; Vanderstichele, Hugo; Knapik‐Czajka, Malgorzata; Clark, Christopher M.; Aisen, Paul S.; Petersen, Ronald C.; Blennow, Kaj; Soares, Holly; Simon, Adam; Lewczuk, Piotr; Dean, Robert; Siemers, Eric; Potter, William; Lee, Virginia M.‐Y.; Trojanowski, John Q. (April 2009). "Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects". Annals of Neurology. 65 (4): 403–413. doi:https://doi.org/10.1002/ana.21610. {{cite journal}}: Check |doi= value (help); External link in |doi= (help)
  9. ^ Hardy, John; Selkoe, Dennis J. (19 July 2002). "The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics". Science. 297 (5580): 353–356. doi:DOI: 10.1126/science.1072994. {{cite journal}}: Check |doi= value (help)
  10. ^ Nussbaum, Robert L.; Ellis, Christopher E. (3 April 2003). "Alzheimer's Disease and Parkinson's Disease". New England Journal of Medicine. 348 (14): 1356–1364. doi:https://doi.org/10.1056/NEJM2003ra020003. {{cite journal}}: Check |doi= value (help); External link in |doi= (help)
  11. ^ Tolnay, Markus; Probst, Alphonse (June 2003). "The Neuropathological Spectrum of Neurodegenerative Tauopathies". IUBMB Life. 55 (6): 299–305. doi:https://doi.org/10.1080/1521654032000114348. {{cite journal}}: Check |doi= value (help); External link in |doi= (help)
  12. ^ Tolnay, Markus; Probst, Alphonse (June 2003). "The Neuropathological Spectrum of Neurodegenerative Tauopathies". IUBMB Life. 55 (6): 299–305. doi:https://doi.org/10.1080/1521654032000114348. {{cite journal}}: Check |doi= value (help); External link in |doi= (help)
  13. ^ Coughlin, David G.; Litvan, Irene (April 2020). "Progressive supranuclear palsy: Advances in diagnosis and management". Parkinsonism & Related Disorders. pp. 105–116. doi:10.1016/j.parkreldis.2020.04.014.
  14. ^ Tolnay, Markus; Probst, Alphonse (June 2003). "The Neuropathological Spectrum of Neurodegenerative Tauopathies". IUBMB Life. 55 (6): 299–305. doi:https://doi.org/10.1080/1521654032000114348. {{cite journal}}: Check |doi= value (help); External link in |doi= (help)
  15. ^ a b Cite error: The named reference ReferenceA was invoked but never defined (see the help page).
  16. ^ Santa-Maria I, Haggiagi A, Liu X, Wasserscheid J, Nelson PT, Dewar K, Clark LN, Crary JF (November 2012). "The MAPT H1 haplotype is associated with tangle-predominant dementia". Acta Neuropathologica. 124 (5): 693–704. doi:10.1007/s00401-012-1017-1. PMC 3608475. PMID 22802095.
  17. ^ Jellinger KA, Attems J (February 2007). "Neurofibrillary tangle-predominant dementia: comparison with classical Alzheimer disease". Acta Neuropathologica. 113 (2): 107–17. doi:10.1007/s00401-006-0156-7. PMID 17089134. S2CID 5655388.
  18. ^ McKee AC, Cairns NJ, Dickson DW, Folkerth RD, Keene CD, Litvan I, Perl DP, Stein TD, Vonsattel JP, Stewart W, Tripodis Y, Crary JF, Bieniek KF, Dams-O'Connor K, Alvarez VE, Gordon WA (January 2016). "The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy" (PDF). Acta Neuropathologica. 131 (1): 75–86. doi:10.1007/s00401-015-1515-z. PMC 4698281. PMID 26667418.
  19. ^ Roberts GW (1988). "Immunocytochemistry of neurofibrillary tangles in dementia pugilistica and Alzheimer's disease: evidence for common genesis". Lancet. 2 (8626–8627): 1456–8. doi:10.1016/S0140-6736(88)90934-8. PMID 2904573. S2CID 32662671.
  20. ^ Williams DR, Lees AJ (March 2009). "Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges". The Lancet. Neurology. 8 (3): 270–9. doi:10.1016/S1474-4422(09)70042-0. PMID 19233037. S2CID 1417930.
  21. ^ Selkoe DJ, Podlisny MB (2002). "Deciphering the genetic basis of Alzheimer's disease". Annual Review of Genomics and Human Genetics. 3: 67–99. doi:10.1146/annurev.genom.3.022502.103022. PMID 12142353.
  22. ^ Darwich NF, Phan JM, et al. (2020). "Autosomal dominant VCP hypomorph mutation impairs disaggregation of PHF-tau". Science. 370 (6519): eaay8826. doi:10.1126/science.aay8826. PMC 7818661. PMID 33004675.
  23. ^ Hof PR, Nimchinsky EA, Buée-Scherrer V, Buée L, Nasrallah J, Hottinger AF, Purohit DP, Loerzel AJ, Steele JC, Delacourte A (1994). "Amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam: quantitative neuropathology, immunohistochemical analysis of neuronal vulnerability, and comparison with related neurodegenerative disorders". Acta Neuropathologica. 88 (5): 397–404. doi:10.1007/BF00389490. PMID 7847067. S2CID 2821768.
  24. ^ Brat DJ, Gearing M, Goldthwaite PT, Wainer BH, Burger PC (June 2001). "Tau-associated neuropathology in ganglion cell tumours increases with patient age but appears unrelated to ApoE genotype". Neuropathology and Applied Neurobiology. 27 (3): 197–205. doi:10.1046/j.1365-2990.2001.00311.x. PMID 11489139. S2CID 36482221.
  25. ^ Halper J, Scheithauer BW, Okazaki H, Laws ER (July 1986). "Meningio-angiomatosis: a report of six cases with special reference to the occurrence of neurofibrillary tangles". Journal of Neuropathology and Experimental Neurology. 45 (4): 426–46. doi:10.1097/00005072-198607000-00005. PMID 3088216. S2CID 663552.
  26. ^ Paula-Barbosa MM, Brito R, Silva CA, Faria R, Cruz C (November 1979). "Neurofibrillary changes in the cerebral cortex of a patient with subacute sclerosing panencephalitis (SSPE)". Acta Neuropathologica. 48 (2): 157–60. doi:10.1007/BF00691159. PMID 506699. S2CID 36105401.
  27. ^ Wisniewski K, Jervis GA, Moretz RC, Wisniewski HM (March 1979). "Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia". Annals of Neurology. 5 (3): 288–94. doi:10.1002/ana.410050311. PMID 156000. S2CID 25649751.
  28. ^ Ferrer I, Santpere G, van Leeuwen FW (June 2008). "Argyrophilic grain disease". Brain. 131 (Pt 6): 1416–32. doi:10.1093/brain/awm305. PMID 18234698.
  29. ^ Josephs KA, Whitwell JL, Parisi JE, Knopman DS, Boeve BF, Geda YE, Jack CR, Petersen RC, Dickson DW (April 2008). "Argyrophilic grains: a distinct disease or an additive pathology?". Neurobiology of Aging. 29 (4): 566–73. doi:10.1016/j.neurobiolaging.2006.10.032. PMC 2727715. PMID 17188783.
  30. ^ Wallon D, Sommervogel C, Laquerrière A, Martinaud O, Lecourtois M, Hannequin D (April 2010). "[Argyrophilic grain disease: synergistic component of dementia?]" [Argyrophilic grain disease: synergistic component of dementia?]. Revue Neurologique (in French). 166 (4): 428–32. doi:10.1016/j.neurol.2009.10.012. PMID 19963233.
  31. ^ a b Tolnay M, Monsch AU, Staehelin HB, Probst A (May 1999). "[Argyrophilic grain disease: differentiation from Alzheimer disease]". Der Pathologe. 20 (3): 159–68. doi:10.1007/s002920050339. PMID 10412175. S2CID 2026154.
  32. ^ Jellinger KA (April 1998). "Dementia with grains (argyrophilic grain disease)". Brain Pathology. 8 (2): 377–86. doi:10.1111/j.1750-3639.1998.tb00161.x. PMC 8098394. PMID 9546294. S2CID 22872309.
  33. ^ Moussaud S, Jones DR, Moussaud-Lamodière EL, Delenclos M, Ross OA, McLean PJ (October 2014). "Alpha-synuclein and tau: teammates in neurodegeneration?". Molecular Neurodegeneration. 9: 43. doi:10.1186/1750-1326-9-43. PMC 4230508. PMID 25352339.
  34. ^ Kertesz A, McMonagle P, Jesso S (November 2011). "Extrapyramidal syndromes in frontotemporal degeneration". Journal of Molecular Neuroscience. 45 (3): 336–42. doi:10.1007/s12031-011-9616-1. PMID 21887521. S2CID 13315112.