Jump to content

Java Platform, Micro Edition: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Nortti0 (talk | contribs)
m Fix link target of "Personal Profile"
Nortti0 (talk | contribs)
m Link to pages for CDC and CLDC
Line 8: Line 8:
The platform uses the [[object-oriented programming|object-oriented]] [[java (programming language)|Java]] programming language. It is part of the [[Java (software platform)|Java software-platform]] family. Java ME was designed by [[Sun Microsystems]], acquired by [[Oracle Corporation]] in 2010; the platform replaced a similar technology, [[PersonalJava]]. Originally developed under the [[Java Community Process]] as JSR 68, the different flavors of Java ME have evolved in separate JSRs. Oracle provides a [[reference implementation]] of the specification, but has tended not to provide free binary implementations of its Java ME runtime environment for mobile devices, rather relying on third parties to provide their own. As of 2008, all Java ME platforms are currently restricted to [[Java virtual machine|JRE]] 1.3 features and use that version of the class file format (internally known as version 47.0). Should Oracle ever declare a new round of Java ME configuration versions that support the later class file formats and language features, such as those corresponding to JRE 1.5 or 1.6 (notably, [[Generics in Java|generics]]), it will entail extra work on the part of all platform vendors to update their JREs.{{speculation inline}}
The platform uses the [[object-oriented programming|object-oriented]] [[java (programming language)|Java]] programming language. It is part of the [[Java (software platform)|Java software-platform]] family. Java ME was designed by [[Sun Microsystems]], acquired by [[Oracle Corporation]] in 2010; the platform replaced a similar technology, [[PersonalJava]]. Originally developed under the [[Java Community Process]] as JSR 68, the different flavors of Java ME have evolved in separate JSRs. Oracle provides a [[reference implementation]] of the specification, but has tended not to provide free binary implementations of its Java ME runtime environment for mobile devices, rather relying on third parties to provide their own. As of 2008, all Java ME platforms are currently restricted to [[Java virtual machine|JRE]] 1.3 features and use that version of the class file format (internally known as version 47.0). Should Oracle ever declare a new round of Java ME configuration versions that support the later class file formats and language features, such as those corresponding to JRE 1.5 or 1.6 (notably, [[Generics in Java|generics]]), it will entail extra work on the part of all platform vendors to update their JREs.{{speculation inline}}


Java ME devices implement a ''profile''. The most common of these are the [[Mobile Information Device Profile]] aimed at mobile devices, such as cell phones, and the [[Connected Device Configuration#Personal Profile|Personal Profile]] aimed at consumer products and embedded devices like [[set-top box]]es and PDAs. Profiles are subsets of ''configurations'', of which there are currently two: the Connected Limited Device Configuration (CLDC) and the Connected Device Configuration (CDC).<ref>[http://java.sun.com/javame/technology/ Java ME Technology]</ref>
Java ME devices implement a ''profile''. The most common of these are the [[Mobile Information Device Profile]] aimed at mobile devices, such as cell phones, and the [[Connected Device Configuration#Personal Profile|Personal Profile]] aimed at consumer products and embedded devices like [[set-top box]]es and PDAs. Profiles are subsets of ''configurations'', of which there are currently two: the [[Connected Limited Device Configuration]] (CLDC) and the [[Connected Device Configuration]] (CDC).<ref>[http://java.sun.com/javame/technology/ Java ME Technology]</ref>


In 2013, there were more than 3 billion Java&nbsp;ME enabled mobile phones, with more than 30x as many Java phones shipping every year as Android and iOS combined.<ref>{{Cite web |url=http://www.java.com/en/about/ |title=Learn about Java Technology |access-date=February 15, 2024 |archive-url=https://web.archive.org/web/20130308080819/http://www.java.com/en/about/ |archive-date=March 8, 2013 |url-status=dead }}</ref> It was popular in sub-$200 devices such as Nokia's [[Series 40]]. It was also used on the [[Bada]] operating system and on [[Symbian]] OS along with native software. Users of [[Windows CE]], [[Windows Mobile]], [[Maemo]], [[MeeGo]] and [[Android software development|Android]] could download Java&nbsp;ME for their respective environments ("proof-of-concept" for Android).<ref>[https://web.archive.org/web/20160819121416/http://davy.preuveneers.be/phoneme/ phoneME for Windows CE, Windows Mobile and Android (development stopped in 2011-06-15)] - in origin [http://davy.preuveneers.be/phoneme/ here]</ref><ref>{{Cite web |url=http://www.netmite.com/android/ |title=App Runner (development stopped in 2010-05-11) |access-date=August 5, 2012 |archive-url=https://web.archive.org/web/20120103192628/http://www.netmite.com/android/ |archive-date=January 3, 2012 |url-status=dead }}</ref>
In 2013, there were more than 3 billion Java&nbsp;ME enabled mobile phones, with more than 30x as many Java phones shipping every year as Android and iOS combined.<ref>{{Cite web |url=http://www.java.com/en/about/ |title=Learn about Java Technology |access-date=February 15, 2024 |archive-url=https://web.archive.org/web/20130308080819/http://www.java.com/en/about/ |archive-date=March 8, 2013 |url-status=dead }}</ref> It was popular in sub-$200 devices such as Nokia's [[Series 40]]. It was also used on the [[Bada]] operating system and on [[Symbian]] OS along with native software. Users of [[Windows CE]], [[Windows Mobile]], [[Maemo]], [[MeeGo]] and [[Android software development|Android]] could download Java&nbsp;ME for their respective environments ("proof-of-concept" for Android).<ref>[https://web.archive.org/web/20160819121416/http://davy.preuveneers.be/phoneme/ phoneME for Windows CE, Windows Mobile and Android (development stopped in 2011-06-15)] - in origin [http://davy.preuveneers.be/phoneme/ here]</ref><ref>{{Cite web |url=http://www.netmite.com/android/ |title=App Runner (development stopped in 2010-05-11) |access-date=August 5, 2012 |archive-url=https://web.archive.org/web/20120103192628/http://www.netmite.com/android/ |archive-date=January 3, 2012 |url-status=dead }}</ref>

Revision as of 21:29, 22 February 2024

Java Platform, Micro Edition or Java ME is a computing platform for development and deployment of portable code for embedded and mobile devices (micro-controllers, sensors, gateways, mobile phones, personal digital assistants, TV set-top boxes, printers).[1] Java ME was formerly known as Java 2 Platform, Micro Edition or J2ME. As of December 22, 2006, the Java ME source code is licensed under the GNU General Public License, and is released under the project name phoneME.

The platform uses the object-oriented Java programming language. It is part of the Java software-platform family. Java ME was designed by Sun Microsystems, acquired by Oracle Corporation in 2010; the platform replaced a similar technology, PersonalJava. Originally developed under the Java Community Process as JSR 68, the different flavors of Java ME have evolved in separate JSRs. Oracle provides a reference implementation of the specification, but has tended not to provide free binary implementations of its Java ME runtime environment for mobile devices, rather relying on third parties to provide their own. As of 2008, all Java ME platforms are currently restricted to JRE 1.3 features and use that version of the class file format (internally known as version 47.0). Should Oracle ever declare a new round of Java ME configuration versions that support the later class file formats and language features, such as those corresponding to JRE 1.5 or 1.6 (notably, generics), it will entail extra work on the part of all platform vendors to update their JREs.[speculation?]

Java ME devices implement a profile. The most common of these are the Mobile Information Device Profile aimed at mobile devices, such as cell phones, and the Personal Profile aimed at consumer products and embedded devices like set-top boxes and PDAs. Profiles are subsets of configurations, of which there are currently two: the Connected Limited Device Configuration (CLDC) and the Connected Device Configuration (CDC).[2]

In 2013, there were more than 3 billion Java ME enabled mobile phones, with more than 30x as many Java phones shipping every year as Android and iOS combined.[3] It was popular in sub-$200 devices such as Nokia's Series 40. It was also used on the Bada operating system and on Symbian OS along with native software. Users of Windows CE, Windows Mobile, Maemo, MeeGo and Android could download Java ME for their respective environments ("proof-of-concept" for Android).[4][5]

Connected Limited Device Configuration

The Connected Limited Device Configuration (CLDC) contains a strict subset of the Java-class libraries, and is the minimum amount needed for a Java virtual machine to operate. CLDC is basically used for classifying myriad devices into a fixed configuration.

A configuration provides the most basic set of libraries and virtual-machine features that must be present in each implementation of a J2ME environment. When coupled with one or more profiles, the Connected Limited Device Configuration gives developers a solid Java platform for creating applications for consumer and embedded devices. The configuration is designed for devices with 160KB to 512KB total memory, which has a minimum of 160KB of ROM and 32KB of RAM available for the Java platform.

Mobile Information Device Profile

Designed for mobile phones, the Mobile Information Device Profile includes a GUI, and a data storage API, and MIDP 2.0 includes a basic 2D gaming API. Applications written for this profile are called MIDlets.

JSR 271: Mobile Information Device Profile 3 (Final release on Dec 9, 2009) specified the 3rd generation Mobile Information Device Profile (MIDP3), expanding upon the functionality in all areas as well as improving interoperability across devices. A key design goal of MIDP3 is backward compatibility with MIDP2 content.

Information Module Profile

The Information Module Profile (IMP) is a profile for embedded, "headless" devices such as vending machines, industrial embedded applications, security systems, and similar devices with either simple or no display and with some limited network connectivity.

Originally introduced by Siemens Mobile and Nokia as JSR-195, IMP 1.0 is a strict subset of MIDP 1.0 except that it does not include user interface APIs — in other words, it does not include support for the Java package javax.microedition.lcdui. JSR-228, also known as IMP-NG, is IMP's next generation that is based on MIDP 2.0, leveraging MIDP 2.0's new security and networking types and APIs, and other APIs such as PushRegistry and platformRequest(), but again it does not include UI APIs, nor the game API.

Connected Device Configuration

The Connected Device Configuration is a subset of Java SE, containing almost all the libraries that are not GUI related. It is richer than CLDC.

Foundation Profile

The Foundation Profile is a Java ME Connected Device Configuration (CDC) profile. This profile is intended to be used by devices requiring a complete implementation of the Java virtual machine up to and including the entire Java Platform, Standard Edition API. Typical implementations will use some subset of that API set depending on the additional profiles supported. This specification was developed under the Java Community Process.

Personal Basis Profile

The Personal Basis Profile extends the Foundation Profile to include lightweight GUI support in the form of an AWT subset. This is the platform that BD-J is built upon.

Implementations

Sun provides a reference implementation of these configurations and profiles for MIDP and CDC. Starting with the JavaME 3.0 SDK, a NetBeans-based IDE will support them in a single IDE.

In contrast to the numerous binary implementations of the Java Platform built by Sun for servers and workstations, Sun does not provide any binaries for the platforms of Java ME targets with the exception of an MIDP 1.0 JRE (JVM) for Palm OS.[6] Sun provides no J2ME JRE for the Microsoft Windows Mobile (Pocket PC) based devices, despite an open-letter campaign to Sun to release a rumored internal implementation of PersonalJava known by the code name "Captain America".[7] Third party implementations are widely used by Windows Mobile vendors.

Operating systems targeting Java ME have been implemented by DoCoMo in the form of DoJa, and by SavaJe as SavaJe OS. The latter company was purchased by Sun in April 2007 and now forms the basis of Sun's JavaFX Mobile.

The open-source Mika VM aims to implement JavaME CDC/FP, but is not certified as such (certified implementations are required to charge royalties, which is impractical for an open-source project). Consequently, devices which use this implementation are not allowed to claim JavaME CDC compatibility.

The Linux-based Android operating system uses a proprietary version of Java that is similar in intent, but very different in many ways from Java ME.[8]

JSRs (Java Specification Requests)

Foundation

JSR # Name Description
68 J2ME Platform Specification
30 CLDC 1.x
37 MIDP 1.0
118 MIDP 2.x
139 CLDC 1.1
271 MIDP 3.0 Java ME 3.4 and earlier only, Last Specification for Mobile Phones, Java Language features as Java SE 1.3
360 CLDC 8 New in Java ME 8
361 MEEP 8 New in Java ME 8, Language feature as Java SE 8, for Internet of Everything devices

Main extensions

JSR # Name Description MSA
75 File Connection and PIM API File system, contacts, calendar, to-do Yes
82 Bluetooth Bluetooth serial port communications and file exchanges (OBEX) Yes
120 Wireless Messaging API (WMA)
135 Mobile Media API (MMAPI) Audio, video, multimedia Yes
172 Web Services API XML parsers and RPC Yes
177 Security and Trust Services API (SATSA) APDU, Java Card RMI (JCRMI), Public Key Infrastructure (PKI) and cryptography Yes
179 Location API GPS coordinates, street addresses, orientation sensors, landmark stores Yes
180 SIP API Yes
184 Mobile 3D Graphics (M3G) High level 3D graphics Yes
185 Java Technology for the Wireless Industry (JTWI) General
205 Wireless Messaging API (WMA) 2.0 Sending and receiving SMS and MMS
211 Content Handler API (CHAPI) Yes
226 Scalable 2D Vector Graphics API for J2ME (M2G) Handling SVG Tiny Yes
228 Information Module Profile – Next Generation (IMP NG)
229 Payment API Yes
234 Advanced Multimedia Supplements (AMMS) MMAPI extensions Yes
238 Mobile Internationalization API Localized resources, locale date and number formatting, locale comparison of strings Yes
239 Java Bindings for the OpenGL ES API
248 Mobile Service Architecture (MSA) Yes
253 Mobile Telephony API
256 Mobile Sensor API Reading values from accelerometers, gyroscopes, compasses, thermometers, barometers, and some more
257 Contactless Communication API
258 Mobile User Interface Customization API
272 Mobile Broadcast Service API for Handheld Terminals
280 XML API for Java ME
281 IMS Services API
287 Scalable 2D Vector Graphics API 2.0 for Java ME
293 Location API 2.0
298 Telematics API for Java ME
300 DRM API for Java ME
325 IMS Communication Enablers

Future

JSR # Name Description
297 Mobile 3D Graphics API (M3G) 2.0 Proposed Final Draft for 14 Apr, 2009

ESR

The ESR consortium is devoted to Standards for embedded Java. Especially cost effective Standards. Typical applications domains are industrial control, machine-to-machine, medical, e-metering, home automation, consumer, human-to-machine-interface, ...

ESR # Name Description
001 B-ON (Beyond CLDC) B-ON serves as a very robust foundation for implementing embedded Java software. It specifies a reliable initialization phase of the Java device, and 3 kind of objects: immutable, immortal and regular (mortal) objects.
002 MicroUI MicroUI defines an enhanced architecture to enable an open, third-party, application development environment for embedded HMI devices. Such devices typically have some form of display, some input sensors and potentially some sound rendering capabilities. This specification spans a potentially wide set of devices.
011 MWT MWT defines three distinct roles: Widget Designers, Look and Feel Designers, and Application Designers. MWT allows a binary HMI application to run the same on all devices that provide a compliant MWT framework (embedded devices, cellphones, set-top box TV's, PC's, etc...) allowing for true consistency and ubiquity of applications across product lines (ME, SE, EE).
015 ECLASSPATH ECLASSPATH unifies CLDC, CDC, Foundation, SE, and EE execution environments with a set of around 300 classes API. Compiling against CLDC1.1/ECLASSPATH makes binary code portable across all Java execution environments.

See also

References

  1. ^ "Java ME Overview". Oracle Corporation. Retrieved February 26, 2017.
  2. ^ Java ME Technology
  3. ^ "Learn about Java Technology". Archived from the original on March 8, 2013. Retrieved February 15, 2024.
  4. ^ phoneME for Windows CE, Windows Mobile and Android (development stopped in 2011-06-15) - in origin here
  5. ^ "App Runner (development stopped in 2010-05-11)". Archived from the original on January 3, 2012. Retrieved August 5, 2012.
  6. ^ MIDP for Palm OS 1.0: Developing Java Applications for Palm OS Devices January 2002
  7. ^ CDC and Personal Profile - Open letter to SUN to produce a Personal Java JRE for Pocket PC Archived June 3, 2008, at the Wayback Machine 2003
  8. ^ Mobile application development: Android compared to J2ME Archived September 25, 2018, at the Wayback Machine Feb 2013
Notes

Bibliography