Draft:Nanoscribe: Difference between revisions
Citation bot (talk | contribs) Alter: title, template type. Add: pmc, chapter-url, chapter, pmid, pages. Removed or converted URL. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Jay8g | Category:CS1 errors: dates | #UCB_Category 103/271 |
I've made the introduction more neutral and sourced information from various outlets beyond the press releases. I found an ebook discussing several companies in 3D printing and an interview mentioning another company's prominence. I refrained from using the term "market leader" and rewrote the "Industrial mastering" section neutrally. |
||
Line 13: | Line 13: | ||
| website = nanoscribe.com |
| website = nanoscribe.com |
||
}}{{Advert|date=April 2024}} |
}}{{Advert|date=April 2024}} |
||
'''Nanoscribe''' is the first company to develop, manufacture, and market [[3D printing#Processes and printers|3D printers]] based on two-photon polymerization.<ref>{{Cite journal |last1=Bunea |first1=Ada-Ioana |last2=del Castillo Iniesta |first2=Nuria |last3=Droumpali |first3=Ariadni |last4=Wetzel |first4=Alexandre Emmanuel |last5=Engay |first5=Einstom |last6=Taboryski |first6=Rafael |date=December 2021 |title=Micro 3D Printing by Two-Photon Polymerization: Configurations and Parameters for the Nanoscribe System |journal=Micro |language=en |volume=1 |issue=2 |pages=164–180 |doi=10.3390/micro1020013 |doi-access=free |issn=2673-8023}}</ref> Founded in 2007, the company is |
'''Nanoscribe''' is the first company to develop, manufacture, and market [[3D printing#Processes and printers|3D printers]] based on two-photon polymerization.<ref>{{Cite journal |last1=Bunea |first1=Ada-Ioana |last2=del Castillo Iniesta |first2=Nuria |last3=Droumpali |first3=Ariadni |last4=Wetzel |first4=Alexandre Emmanuel |last5=Engay |first5=Einstom |last6=Taboryski |first6=Rafael |date=December 2021 |title=Micro 3D Printing by Two-Photon Polymerization: Configurations and Parameters for the Nanoscribe System |journal=Micro |language=en |volume=1 |issue=2 |pages=164–180 |doi=10.3390/micro1020013 |doi-access=free |issn=2673-8023}}</ref> Founded in 2007, the company is a significant player in the field of nano- and microscale [[3D printing]]<ref>{{Cite web |last=Boissonneault |first=Tess |date=2024-02-28 |title=VoxelMatters Medical AM Focus 2024 eBook |url=https://www.voxelmatters.com/voxelmatters-medical-am-focus-2024-ebook/ |access-date=2024-04-05 |website=VoxelMatters - The heart of additive manufacturing |language=en-US}}</ref><ref>{{Cite web |title=XPECT INX joins into distribution agreement with Nanoscribe {{!}} BIO INX |url=https://bioinx.com/news/xpect-inx-joins-distribution-agreement-nanoscribe |access-date=2024-04-05 |website=bioinx.com}}</ref> Nanoscribe's printers are noted for their high resolution, enabling submicron-scale additive manufacturing.<ref>{{Cite web |title=Mit dem Mikroroboter unterwegs im Körper – DW – 01.06.2017 |url=https://www.dw.com/de/mit-dem-mikroroboter-unterwegs-im-k%C3%B6rper/a-39064881 |access-date=2024-04-04 |website=dw.com |language=de}}</ref><ref>{{Cite web |last=Molitch-Hou |first=Michael |title=Light-Based Computing Era Enabled With 3D Printed Microoptics |url=https://www.forbes.com/sites/michaelmolitch-hou/2022/03/31/light-based-computing-era-enabled-with-3d-printed-microoptics/ |access-date=2024-04-04 |website=Forbes |language=en}}</ref> |
||
This technology opens up avenues for various research methods and applications in fields such as [[photonics]], microoptics, medical, and communication technologies, which were previously out of reach of conventional fabrication methods.<ref name=":0">{{Cite web |last=Oberdorf |first=Iris (SEK) |date=2023-07-11 |title=KIT - KIT - Media - Press Releases - Archive Press Releases - PI 2018 - Nanoscribe Wins 1st Prize at the Baden-Württemberg State Awards for Young Companies |url=https://www.kit.edu/kit/english/pi_2018_142_nanoscribe-wins-1st-prize-at-the-baden-wurttemberg-state-awards-for-young-companies.php |access-date=2024-04-04 |website=www.kit.edu |language=en-gb}}</ref> |
|||
A notable number of users, more than 4,000 from more than 30 countries are now using Nanoscribe 3D printers for basic and applied research.<ref name=":1">{{Cite web |date=2024-04-04 |title=Company profile Nanoscribe GmbH & Co. KG |url=https://www.nanoscribe.com/en/contact-support/about-us/ |access-date=2024-04-04 |type=Company profile}}</ref> Among them are several prestigious universities, including [[Harvard University]], [[Massachusetts Institute of Technology]] (MIT), [[California Institute of Technology]], [[University of Oxford]], [[Imperial College London]] and [[ETH Zurich]].<ref>{{Cite web |title=Half of the Top 10 Universities in the World Already use Nanoscribe's 3D Printers - Additive Manufacturing (AM) |url=https://additivemanufacturing.com/2015/11/30/half-of-the-top-10-universities-in-the-world-already-use-nanoscribes-3d-printers/ |access-date=2024-04-04 |website=additivemanufacturing.com}}</ref> |
|||
== History == |
== History == |
||
Line 59: | Line 59: | ||
=== Industrial Mastering === |
=== Industrial Mastering === |
||
Nanoscribe's Two-Photon Grayscale Lithography (2GL) |
In industrial mastering, Nanoscribe's Two-Photon Grayscale Lithography (2GL) has been utilized for [[prototyping]] and mastering micro- and nanostructured 2.5D topographies. This technology, when combined with suitable replication processes, allows for the production of these topographies in large quantities and with high precision.<ref name=":4" /> Examples of applications include: |
||
Microoptics: High-precision, moldable microoptics are needed in large quantities for applications such as directional lighting, microscopy (e.g., phase plates), miniaturized sensing, or in headsets for virtual or [[augmented reality]].<ref>{{Cite book |last1=Kneidinger |first1=A. |last2=Schuster |first2=P. |last3=Thanner |first3=C. |last4=Eibelhuber |first4=M. |chapter=Advanced manufacturing techniques for wafer-level freeform micro optics with high refractive index |editor-first1=Georg |editor-first2=Alois M. |editor-first3=Manuel |editor-last1=von Freymann |editor-last2=Herkommer |editor-last3=Flury |date=2022-05-20 |title=3D Printed Optics and Additive Photonic Manufacturing III |chapter-url=https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12135/1213509/Advanced-manufacturing-techniques-for-wafer-level-freeform-micro-optics-with/10.1117/12.2632072.full |publisher=SPIE |volume=12135 |pages=61–67 |doi=10.1117/12.2632072|bibcode=2022SPIE12135E..09K |isbn=978-1-5106-5146-3 }}</ref><ref>{{Cite web |last=NANOSCRIBE |first=MARTIN EIBELHUBER, EV GROUP, AND JÖRG SMOLENSKI |title=Technique Scales Up High-Volume Manufacturing of Micro-Optics |url=https://www.photonics.com/Articles/Technique_Scales_Up_High-Volume_Manufacturing_of/a67127 |access-date=2024-04-04 |website=www.photonics.com}}</ref> |
Microoptics: High-precision, moldable microoptics are needed in large quantities for applications such as directional lighting, microscopy (e.g., phase plates), miniaturized sensing, or in headsets for virtual or [[augmented reality]].<ref>{{Cite book |last1=Kneidinger |first1=A. |last2=Schuster |first2=P. |last3=Thanner |first3=C. |last4=Eibelhuber |first4=M. |chapter=Advanced manufacturing techniques for wafer-level freeform micro optics with high refractive index |editor-first1=Georg |editor-first2=Alois M. |editor-first3=Manuel |editor-last1=von Freymann |editor-last2=Herkommer |editor-last3=Flury |date=2022-05-20 |title=3D Printed Optics and Additive Photonic Manufacturing III |chapter-url=https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12135/1213509/Advanced-manufacturing-techniques-for-wafer-level-freeform-micro-optics-with/10.1117/12.2632072.full |publisher=SPIE |volume=12135 |pages=61–67 |doi=10.1117/12.2632072|bibcode=2022SPIE12135E..09K |isbn=978-1-5106-5146-3 }}</ref><ref>{{Cite web |last=NANOSCRIBE |first=MARTIN EIBELHUBER, EV GROUP, AND JÖRG SMOLENSKI |title=Technique Scales Up High-Volume Manufacturing of Micro-Optics |url=https://www.photonics.com/Articles/Technique_Scales_Up_High-Volume_Manufacturing_of/a67127 |access-date=2024-04-04 |website=www.photonics.com}}</ref> |
Revision as of 14:52, 5 April 2024
Draft article not currently submitted for review.
This is a draft Articles for creation (AfC) submission. It is not currently pending review. While there are no deadlines, abandoned drafts may be deleted after six months. To edit the draft click on the "Edit" tab at the top of the window. To be accepted, a draft should:
It is strongly discouraged to write about yourself, your business or employer. If you do so, you must declare it. This draft has not been edited in over six months and qualifies to be deleted per CSD G13.
Where to get help
How to improve a draft
You can also browse Wikipedia:Featured articles and Wikipedia:Good articles to find examples of Wikipedia's best writing on topics similar to your proposed article. Improving your odds of a speedy review To improve your odds of a faster review, tag your draft with relevant WikiProject tags using the button below. This will let reviewers know a new draft has been submitted in their area of interest. For instance, if you wrote about a female astronomer, you would want to add the Biography, Astronomy, and Women scientists tags. Editor resources
Last edited by 3DmicroPrintExpert (talk | contribs) 9 months ago. (Update) |
Company type | Private |
---|---|
Industry | 3D printing, Bioprinting, Technology |
Founded | 2007 |
Headquarters | Eggenstein-Leopoldshafen, Germany |
Key people | Martin Hermatschweiler (CEO) Lars Tritschler (CFO) |
Revenue | 15,8 Million (2020) |
Number of employees | 100+ (2024) |
Website | nanoscribe.com |
This article contains promotional content. (April 2024) |
Nanoscribe is the first company to develop, manufacture, and market 3D printers based on two-photon polymerization.[1] Founded in 2007, the company is a significant player in the field of nano- and microscale 3D printing[2][3] Nanoscribe's printers are noted for their high resolution, enabling submicron-scale additive manufacturing.[4][5]
This technology opens up avenues for various research methods and applications in fields such as photonics, microoptics, medical, and communication technologies, which were previously out of reach of conventional fabrication methods.[6]
A notable number of users, more than 4,000 from more than 30 countries are now using Nanoscribe 3D printers for basic and applied research.[7] Among them are several prestigious universities, including Harvard University, Massachusetts Institute of Technology (MIT), California Institute of Technology, University of Oxford, Imperial College London and ETH Zurich.[8]
History
Foundation and expansion
The company was founded in 2007 by Martin Hermatschweiler, Michael Thiel, Georg von Freymann and Martin Wegener as the first spin-off of the Karlsruhe Institute of Technology (KIT).[6][9] The Carl ZEISS company acquired shares in the company in September 2008.[10]
In 2008, Nanoscribe opened a subsidiary in Shanghai, China,[11] and in 2019 a subsidiary in Boston, USA.[12] In January 2020, Nanoscribe moved into its headquarters at the ZEISS Innovation Hub @ KIT.[13] Since May 2021 Nanoscribe is part of Cellink, now BICO Group AB.[14] In April 2024, the company has more than 100 employees worldwide.[15]
Product development
The first 3D laser lithography system was shipped in June 2008.[16] In 2013, the company introduced the world's fastest 3D printer for nano- and microstructuring; the first commercial 3D printer for microfabrication to use a galvanometer mirror system, typically accelerating printing speed by a factor of 100.[17]
In 2019, Nanoscribe introduced the new Quantum X product as the world's first two-photon grayscale lithography system.[18] In December 2021, Nanoscribe and Cellink, a sister company within the BICO group, jointly introduced the new Quantum X bio, a 3D bioprinter with submicron resolution for printing biomaterials, bioresins, biocompatible materials and cell-encapsulated materials for live cell printing.[19][20][21]
In January 2022, the company introduced the Quantum X align, the world's first 3D printer with automatic alignment on complex substrates such as optical fibers and photonic chips with nanometer precision.[22]
Technology
The technologies developed by Nanoscribe are based on two-photon polymerization (2PP), which is physically based on two-photon absorption.[23][24]
Two-photon polymerization
Two-photon polymerization (2PP) uses a UV-curable photopolymer but exposes it to lower energy near infrared (NIR) light. At least two photons are required simultaneously to activate the chemical curing process with sufficient energy at a given point in the photopolymer volume. This requires high light intensity, which is achieved by femtosecond laser light pulses at the laser focus only. This allows structures to be printed with approximately 100 times higher precision than with 3D printing technologies based on one-photon absorption.[23][24][25]
Two-photon grayscale lithography
Nanoscribe's patented Two-Photon Grayscale Lithography (2GL®) combines the exposure dose variation of one-photon grayscale lithography with the submicron resolution and design freedom of two-photon polymerization. With 2GL, the exposure dose can be modulated during the laser scanning process, allowing the size of each voxel to be varied during the printing process. This drastically reduces the number of laser scanning passes required and thus the printing time.[26]
Application areas
There are more than 1,800 peer-reviewed scientific publications reporting research primarily based on Nanoscribe systems.[7] A Google Scholar search yields approximately >2,600 publications related to Nanoscribe systems.[27][28]
Science and research
Some specific application examples from research:
· Filter membranes: 3D-printed membranes can filter tumor cells circulating in the blood for early cancer detection.[29]
· Cell scaffolds: Glioblastoma cell cultures can be studied on 3D printed cell scaffolds under proton radiation.[30]
· Cochlear implants: A cochlear implant with a 3D-printed steroid reservoir is being developed to reduce further damage to residual hearing.[31]
· Responsive microstents: Scientists fabricate the world's smallest microstent from soft and reactive components.[32]
· Microfluidic mixers: A miniaturized 3D mixer for producing drug-loaded nanoparticles is printed directly onto a microfluidic chip.[33]
Industrial Mastering
In industrial mastering, Nanoscribe's Two-Photon Grayscale Lithography (2GL) has been utilized for prototyping and mastering micro- and nanostructured 2.5D topographies. This technology, when combined with suitable replication processes, allows for the production of these topographies in large quantities and with high precision.[26] Examples of applications include:
Microoptics: High-precision, moldable microoptics are needed in large quantities for applications such as directional lighting, microscopy (e.g., phase plates), miniaturized sensing, or in headsets for virtual or augmented reality.[34][35]
Industrial Manufacturing
Exemplary applications are:
Microoptical components for Free Space Microoptical Coupling: Free-form microoptics fabricated directly on the optical interfaces of photonic chips or optical fibers provide tailored beam shaping and mode field matching for photonic integrated circuits.[36]
Fiber-based miniature optics: Free-form microoptics can be printed directly onto optical fibers with submicron accuracy for endoscopic imaging.[37]
Awards
2022: Prism Awards Finalist – the Quantum X align 3D printer is a finalist in the “Manufacturing & Test” category of the Prism Award, presented by SPIE, the international society for optics and photonics, and Photonics Media[38]
2019: LASER Innovation Award – out of 1300 competitors, the first prize goes to Nanoscribe Quantum X[39]
2018: State Award for Young Companies - Nanoscribe receives the 1st place at the Baden-Württemberg State Awards for Young Companies[6]
2018: Technology Transfer Award 2017/2018 of the German Physical Society (German: Deutsche Physikalische Gesellschaft, DPG) – Nanoscribe, KIT Innovation and Relations Management and KIT Institute of Nanotechnology are jointly awarded for the successful transfer of scientific research into a commercial product[40]
2015: German Entrepreneur Awards Finalist – Nanoscribe is a finalist in the category “Rising Star” with their high-speed 3D printers on the microscale[41][42]
2014: Prism Award for Photonics Innovation – the Photonic Professional GT 3D printer is recognized by SPIE, the international society for optics and photonics, and Photonics Media in the Advanced Manufacturing category[43]
2011: CyberChampions Award – spin-off from university/research institution[44]
2008: Otto Haxel Award of the "Freundeskreis des Forschungszentrums Karlsruhe e.V." for the founding of Nanoscribe GmbH[45]
References
- ^ Bunea, Ada-Ioana; del Castillo Iniesta, Nuria; Droumpali, Ariadni; Wetzel, Alexandre Emmanuel; Engay, Einstom; Taboryski, Rafael (December 2021). "Micro 3D Printing by Two-Photon Polymerization: Configurations and Parameters for the Nanoscribe System". Micro. 1 (2): 164–180. doi:10.3390/micro1020013. ISSN 2673-8023.
- ^ Boissonneault, Tess (2024-02-28). "VoxelMatters Medical AM Focus 2024 eBook". VoxelMatters - The heart of additive manufacturing. Retrieved 2024-04-05.
- ^ "XPECT INX joins into distribution agreement with Nanoscribe | BIO INX". bioinx.com. Retrieved 2024-04-05.
- ^ "Mit dem Mikroroboter unterwegs im Körper – DW – 01.06.2017". dw.com (in German). Retrieved 2024-04-04.
- ^ Molitch-Hou, Michael. "Light-Based Computing Era Enabled With 3D Printed Microoptics". Forbes. Retrieved 2024-04-04.
- ^ a b c Oberdorf, Iris (SEK) (2023-07-11). "KIT - KIT - Media - Press Releases - Archive Press Releases - PI 2018 - Nanoscribe Wins 1st Prize at the Baden-Württemberg State Awards for Young Companies". www.kit.edu. Retrieved 2024-04-04.
- ^ a b "Company profile Nanoscribe GmbH & Co. KG" (Company profile). 2024-04-04. Retrieved 2024-04-04.
- ^ "Half of the Top 10 Universities in the World Already use Nanoscribe's 3D Printers - Additive Manufacturing (AM)". additivemanufacturing.com. Retrieved 2024-04-04.
- ^ "2018 Fallbeispiele: Nanoscribe". www.gruendungsradar.de (in German). 2018-12-18. Retrieved 2024-04-04.
- ^ "Zeiss Invests in Nanoscribe". www.photonics.com. Retrieved 2024-04-04.
- ^ Overton, Gail (2018-08-31). "Nanoscribe opens office in China to expand 3D nanoprinting business". Laser Focus World. Retrieved 2024-04-04.
- ^ "Nanoscribe expands its worldwide presence". optics.org. Retrieved 2024-04-04.
- ^ "Zeiss Innovation Hub: Wo Wissenschaft und Wirtschaft aufeinandertreffen". Badische Neueste Nachrichten (in German). 2021-02-08. Retrieved 2024-04-04.
- ^ "CELLINK Acquires Nanoscribe, Visikol". www.photonics.com. Retrieved 2024-04-04.
- ^ "Career at Nanoscribe". 2024-04-04.
- ^ "Carl Zeiss Acquired Startup Nanoscribe" (PDF). December 2008. p. 4. Retrieved 2024-04-04.
{{cite news}}
: CS1 maint: url-status (link) - ^ Centres, Helmholtz Association of German Research. "3D printing on the micrometer scale". phys.org. Retrieved 2024-04-04.
- ^ Boissonneault, Tess (2019-06-24). "Quantum X: Nanoscribe launches first two-photon grayscale lithography system". VoxelMatters - The heart of additive manufacturing. Retrieved 2024-04-04.
- ^ Sertoglu, Kubi (2021-12-15). "CELLINK and Nanoscribe announce new jointly-developed Quantum X bio 3D printer". 3D Printing Industry. Retrieved 2024-04-04.
- ^ "Nanoscribe and CELLINK join forces to release the Quantum X bio". AZoNano. 2021-12-16. Retrieved 2024-04-04.
- ^ "Live Cell Encapsulation: BIO INX Launches New Material". additivemanufacturing.com. Retrieved 2024-04-04.
- ^ Gambini, Andrea (2022-01-28). "Nanoscribe launches Quantum X align". VoxelMatters - The heart of additive manufacturing. Retrieved 2024-04-04.
- ^ a b "Nanoscribe GmbH & Co. KG (Hrsg.): Additive manufacturing based on Two-Photon Polymerization". https://www.nanoscribe.com/en/whitepaper. 2024-04-04. Retrieved 2024-04-04.
{{cite web}}
: External link in
(help)|website=
- ^ a b Sun, Hong-Bo; Kawata, Satoshi (2004), Fatkullin, N.; Ikehara, T.; Jinnai, H.; Kawata, S. (eds.), "Two-Photon Photopolymerization and 3D Lithographic Microfabrication", NMR • 3D Analysis • Photopolymerization, Berlin, Heidelberg: Springer, pp. 169–273, doi:10.1007/b94405, ISBN 978-3-540-40000-4, retrieved 2024-04-04
- ^ Deubel, Markus; von Freymann, Georg; Wegener, Martin; Pereira, Suresh; Busch, Kurt; Soukoulis, Costas M. (July 2004). "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications". Nature Materials. 3 (7): 444–447. Bibcode:2004NatMa...3..444D. doi:10.1038/nmat1155. ISSN 1476-4660. PMID 15195083.
- ^ a b "Nanoscribe GmbH & Co. KG (Hrsg.): Introducing Two-Photon Grayscale Lithography. Januar 2021". 2024-04-04. Retrieved 2024-04-04.
- ^ "Google scholar". google scholar Photonic Professional. 2024-04-04. Retrieved 2024-04-04.
- ^ "Google Scholar Quantum X". Google Scholar Quantum X. 2024-04-04. Retrieved 2024-04-04.
- ^ Jiménez-Zenteno, Alejandro K.; Estève, Aurore; Cayron, Hélène; Bou, Elise; Bourrier, David; Sanson, Sylvain; Calise, Denis; Blatché, Charline; Vieu, Christophe; Malavaud, Bernard; Cerf, Aline (October 2019). "A novel 3D microdevice for the in vivo capture of cancer-associated cells". Medical Devices & Sensors. 2 (5–6). doi:10.1002/mds3.10056. ISSN 2573-802X.
- ^ Akolawala, Qais; Rovituso, Marta; Versteeg, Henri H.; Rondon, Araci M. R.; Accardo, Angelo (2022-05-11). "Evaluation of Proton-Induced DNA Damage in 3D-Engineered Glioblastoma Microenvironments". ACS Applied Materials & Interfaces. 14 (18): 20778–20789. doi:10.1021/acsami.2c03706. ISSN 1944-8244. PMC 9100514. PMID 35442634.
- ^ Jang, Jongmoon; Kim, Jin-young; Kim, Yeong Cheol; Kim, Sangwon; Chou, Namsun; Lee, Seungmin; Choung, Yun-Hoon; Kim, Sohee; Brugger, Juergen; Choi, Hongsoo; Jang, Jeong Hun (October 2019). "A 3D Microscaffold Cochlear Electrode Array for Steroid Elution". Advanced Healthcare Materials. 8 (20): e1900379. doi:10.1002/adhm.201900379. ISSN 2192-2640. PMID 31532887.
- ^ de Marco, Carmela; Alcântara, Carlos C. J.; Kim, Sangwon; Briatico, Francesco; Kadioglu, Ahmet; de Bernardis, Gaston; Chen, Xiangzhong; Marano, Claudia; Nelson, Bradley J.; Pané, Salvador (September 2019). "Indirect 3D and 4D Printing of Soft Robotic Microstructures". Advanced Materials Technologies. 4 (9). doi:10.1002/admt.201900332. ISSN 2365-709X.
- ^ Oellers, Martin; Lucklum, Frieder; Vellekoop, Michael J. (2019-12-06). "On-chip mixing of liquids with swap structures written by two-photon polymerization". Microfluidics and Nanofluidics. 24 (1): 4. doi:10.1007/s10404-019-2309-8. ISSN 1613-4990.
- ^ Kneidinger, A.; Schuster, P.; Thanner, C.; Eibelhuber, M. (2022-05-20). "Advanced manufacturing techniques for wafer-level freeform micro optics with high refractive index". In von Freymann, Georg; Herkommer, Alois M.; Flury, Manuel (eds.). 3D Printed Optics and Additive Photonic Manufacturing III. Vol. 12135. SPIE. pp. 61–67. Bibcode:2022SPIE12135E..09K. doi:10.1117/12.2632072. ISBN 978-1-5106-5146-3.
- ^ NANOSCRIBE, MARTIN EIBELHUBER, EV GROUP, AND JÖRG SMOLENSKI. "Technique Scales Up High-Volume Manufacturing of Micro-Optics". www.photonics.com. Retrieved 2024-04-04.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ^ "Driving industrial innovation in photonic packaging market". 26.01.2022. Retrieved 2024-04-04.
{{cite web}}
: Check date values in:|date=
(help) - ^ Li, Jiawen; Thiele, Simon; Quirk, Bryden C.; Kirk, Rodney W.; Verjans, Johan W.; Akers, Emma; Bursill, Christina A.; Nicholls, Stephen J.; Herkommer, Alois M.; Giessen, Harald; McLaughlin, Robert A. (2020-07-20). "Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use". Light: Science & Applications. 9 (1): 124. Bibcode:2020LSA.....9..124L. doi:10.1038/s41377-020-00365-w. ISSN 2047-7538. PMC 7371638. PMID 32704357.
- ^ "SPIE and Photonics Media announce finalists for 2022 Prism Awards". spie.org. Retrieved 2024-04-04.
- ^ "Nanoscribe Maskless Lithography System Wins Innovation Award". 2019-06-25. Retrieved 2024-04-04.
- ^ "Deutsche Physikalische Gesellschaft vergibt Technologietransferpreis an Karlsruher Einrichtungen". idw-online.de. Retrieved 2024-04-04.
- ^ "Nanoscribe ist Finalist beim Deutschen Gründerpreis". 3druck.com. Retrieved 2024-04-04.
- ^ Technologie, Karlsruher Institut fuer (2023-07-11). "KIT - Das KIT - Medien - Presseinformationen - Archiv Presseinformationen - PI 2015 - RESTUBE gewinnt Deutschen Gründerpreis". www.kit.edu (in German). Retrieved 2024-04-04.
- ^ "2014 Prism Awards Recognize Photonics Innovation". www.photonics.com. Retrieved 2024-04-04.
- ^ Technologie, Karlsruher Institut fuer (2023-02-15). "KIT - Das KIT - Medien - News - Nanoscribe GmbH gewinnt CyberChampions Award". www.kit.edu (in German). Retrieved 2024-04-04.
- ^ Technologie, Karlsruher Institut fuer (2023-07-11). "KIT - Das KIT - Medien - Presseinformationen - Archiv Presseinformationen - PI 2008 - Mehr unternehmerische Freiheiten und Wettbewerb". www.kit.edu (in German). Retrieved 2024-04-04.
External links