Paper data storage: Difference between revisions
sp |
|||
Line 1: | Line 1: | ||
{{refimprove|date=August 2012}} |
{{refimprove|date=August 2012}} |
||
{{short description|Use of paper as computer memory}} |
{{short description|Use of paper as computer memory}} |
||
'''Paper data storage''' refers to the use of [[paper]] as a [[data storage device]]. This includes [[writing]], [[illustrating]], and the use of data that can be interpreted by a machine or is the result of the functioning of a machine. |
'''Paper data storage''' refers to the use of [[paper]] as a [[data storage device]]. This includes [[writing]], [[illustrating]], and the use of data that can be interpreted by a machine or is the result of the functioning of a machine. A defining feature of paper data storage is the ability of humans to produce it with only simple tools and interpret it visually. |
||
{{Memory types}} |
{{Memory types}} |
||
Though now mostly obsolete, paper was once an important form of [[Computer data storage#Paper|computer data storage]] as both [[Punched tape|paper tape]] and [[Punched cards|punch cards]] were a common staple of working with computers before the 1980s. |
Though now mostly obsolete, paper was once an important form of [[Computer data storage#Paper|computer data storage]] as both [[Punched tape|paper tape]] and [[Punched cards|punch cards]] were a common staple of working with computers before the 1980s. |
||
==History== |
==History== |
||
Before paper was used for storing data, it had been used in several applications for storing instructions to specify a machine's operation. |
Before paper was used for storing data, it had been used in several applications for storing instructions to specify a machine's operation. The earliest use of paper to store instructions for a machine was the work of [[Basile Bouchon]] who, in 1725, used punched paper rolls to control textile looms. This technology was later developed into the wildly successful [[Jacquard loom]]. The 19th century saw several other uses of paper for controlling machines. In 1846, telegrams could be prerecorded on [[punched tape]] and rapidly transmitted using [[Alexander Bain (inventor)|Alexander Bain]]'s automatic telegraph. Several inventors took the concept of a mechanical organ and used paper to represent the music. |
||
<div class="floatleft">[[File:IBM1130CopyCard.agr.jpg|150px]] |
<div class="floatleft">[[File:IBM1130CopyCard.agr.jpg|150px]] |
||
Line 12: | Line 12: | ||
</div> |
</div> |
||
In the late 1880s [[Herman Hollerith]] invented the recording of data on a medium that could then be read by a machine. |
In the late 1880s [[Herman Hollerith]] invented the recording of data on a medium that could then be read by a machine. Prior uses of machine readable media, above, had been for control ([[automaton]]s, [[piano roll]]s, [[Jacquard loom|looms]], ...), not data. "After some initial trials with paper tape, he settled on [[punched card]]s..."<ref>{{Cite web|url=http://www.columbia.edu/cu/computinghistory/hollerith.html|title=Herman Hollerith|website=www.columbia.edu}}</ref> Hollerith's method was used in the 1890 census.<!-- The Census Bureau is not "an independent 3rd party" source - as required by Wikipedia - for Census Bureau performance claims. FOLLOWING CLAIM DELETED. --- and the completed results were "... finished months ahead of schedule and far under budget".<ref>[http://www.census.gov/history/www/technology/010873.html U.S. Census Bureau: Tabulation and Processing]</ref>--> Hollerith's company eventually became the core of [[International Business Machines|IBM]]. |
||
Other technologies were also developed that allowed |
Other technologies were also developed that allowed machines to work with marks on paper instead of punched holes. This technology was widely used for [[optical scan voting system|tabulating votes]] and grading [[scantron|standardized tests]]. Banks used magnetic ink on checks, supporting MICR scanning. |
||
In an early electronic computing device, the [[Atanasoff–Berry Computer]], electric sparks were used to |
In an early electronic computing device, the [[Atanasoff–Berry Computer]], electric sparks were used to single small holes in paper cards to represent binary data. The altered [[dielectric constant]] of the paper at the location of the holes could then be used to read the binary data back into the machine by means of electric sparks of lower voltage than the sparks used to create the holes. This form of paper data storage was never made reliable and was not used in any subsequent machine. |
||
==Modern techniques== |
==Modern techniques== |
||
===1D barcodes=== |
===1D barcodes=== |
||
[[Barcode]]s make it possible for any object that was to be sold or transported to have some computer readable information securely attached to it. [[Universal Product Code]] barcodes, first used in 1974, are ubiquitous today. |
[[Barcode]]s make it possible for any object that was to be sold or transported to have some computer readable information securely attached to it. [[Universal Product Code]] barcodes, first used in 1974, are ubiquitous today. Some people recommend a width of at least 3 pixels for each minimum-width gap and each minimum-width bar for 1D barcodes. The density is about 50 bits per linear inch (about 2 bit/mm). |
||
===2D barcodes=== |
===2D barcodes=== |
Latest revision as of 05:26, 4 July 2024
This article needs additional citations for verification. (August 2012) |
Paper data storage refers to the use of paper as a data storage device. This includes writing, illustrating, and the use of data that can be interpreted by a machine or is the result of the functioning of a machine. A defining feature of paper data storage is the ability of humans to produce it with only simple tools and interpret it visually.
Computer memory and data storage types |
---|
Volatile |
Non-volatile |
Though now mostly obsolete, paper was once an important form of computer data storage as both paper tape and punch cards were a common staple of working with computers before the 1980s.
History
[edit]Before paper was used for storing data, it had been used in several applications for storing instructions to specify a machine's operation. The earliest use of paper to store instructions for a machine was the work of Basile Bouchon who, in 1725, used punched paper rolls to control textile looms. This technology was later developed into the wildly successful Jacquard loom. The 19th century saw several other uses of paper for controlling machines. In 1846, telegrams could be prerecorded on punched tape and rapidly transmitted using Alexander Bain's automatic telegraph. Several inventors took the concept of a mechanical organ and used paper to represent the music.
In the late 1880s Herman Hollerith invented the recording of data on a medium that could then be read by a machine. Prior uses of machine readable media, above, had been for control (automatons, piano rolls, looms, ...), not data. "After some initial trials with paper tape, he settled on punched cards..."[1] Hollerith's method was used in the 1890 census. Hollerith's company eventually became the core of IBM.
Other technologies were also developed that allowed machines to work with marks on paper instead of punched holes. This technology was widely used for tabulating votes and grading standardized tests. Banks used magnetic ink on checks, supporting MICR scanning.
In an early electronic computing device, the Atanasoff–Berry Computer, electric sparks were used to single small holes in paper cards to represent binary data. The altered dielectric constant of the paper at the location of the holes could then be used to read the binary data back into the machine by means of electric sparks of lower voltage than the sparks used to create the holes. This form of paper data storage was never made reliable and was not used in any subsequent machine.
Modern techniques
[edit]1D barcodes
[edit]Barcodes make it possible for any object that was to be sold or transported to have some computer readable information securely attached to it. Universal Product Code barcodes, first used in 1974, are ubiquitous today. Some people recommend a width of at least 3 pixels for each minimum-width gap and each minimum-width bar for 1D barcodes. The density is about 50 bits per linear inch (about 2 bit/mm).
2D barcodes
[edit]2D barcodes allow to store much more data on paper, up to 2.9 kbyte per barcode. It is recommended to have a width of at least 4 pixels—e.g., a 4 × 4 pixel = 16 pixel module.[2]
Limits
[edit]The limits of data storage depend on the technology to write and read such data. The theoretical limits assume a scanner that can perfectly reproduce the printed image at its printing resolution, and a program which can accurately interpret such an image. For example, an 8″ × 10″ 600 dpi black-and-white image contains 3.43 MiB of data, as does a 300 dpi CMYK printed image. A 2,400 ppi True color (24-bit) image contains about 1.29 GiB of information; printing an image maintaining this data would require a printing resolution of about 120,000 dpi in black and white, or 60,000 dpi with CMYK dots.
See also
[edit]- Banknote read by a vending machine
- Book music
- Digital preservation
- Edge-notched card
- Index card
- Kimball tag
- Machine-readable medium
- Magnetic ink character recognition
- Mark sense
- Music roll
- Optical mark recognition
- Paper disc
- Paper key
- Perfin
- Perforation
- Punched tape
- Spindle (stationery)
- Stenotype
- Ticker tape
References
[edit]- ^ "Herman Hollerith". www.columbia.edu.
- ^ Accusoft. "Using Barcodes in Documents – Best Practices". 2007. Retrieved 2014-04-25.