Jump to content

HD 15082: Difference between revisions

Coordinates: Sky map 02h 26m 51.0583s, +37° 33′ 01.7377″
From Wikipedia, the free encyclopedia
Content deleted Content added
Corrected the discovery date for the planet, and added a reference to discovery paper. Added discovered of the intrinsic variability.
moved the "Planetary system" section ahead of the "Pulsations" section, because the planet was discovered before intrinsic variability was.
Line 53: Line 53:
==Spectrum==
==Spectrum==
HD 15082 is an [[Am star]], which makes its [[stellar classification]] challenging to discern. The [[spectral lines|hydrogen lines]] and [[effective temperature]] of the star are similar to spectral type A8, however the [[calcium K-line|calcium II K line]] resembles that of an A5 star, and the metallic lines are more similar to an F4 star. The spectral type is written kA5hA8mF4.<ref name="cameron2010" />
HD 15082 is an [[Am star]], which makes its [[stellar classification]] challenging to discern. The [[spectral lines|hydrogen lines]] and [[effective temperature]] of the star are similar to spectral type A8, however the [[calcium K-line|calcium II K line]] resembles that of an A5 star, and the metallic lines are more similar to an F4 star. The spectral type is written kA5hA8mF4.<ref name="cameron2010" />

==Planetary system==
In 2006, the [[SuperWASP]] project announced the discovery of an [[extrasolar planet]], designated [[WASP-33b]], orbiting the star. The discovery was made by detecting the [[transit (astronomy)|transit]] of the planet as it passes in front of its star, an event which occurs every 1.22&nbsp;days.<ref name="Christian"/>


==Pulsations==
==Pulsations==
The intrinsic variability of HD 15082 was discoved in 2011 by Enrique Herrero ''et al.''<ref name=aaa526_L10/>
The intrinsic variability of HD 15082 was discoved in 2011 by Enrique Herrero ''et al.''<ref name=aaa526_L10/>
Delta Scuti variables usually exhibit many [[Asteroseismology|pulsation modes]], and HD 15082 is no exception, with 8 measured high frequency p-modes.<ref name=Essen2014/> Another proposed non-radial mode, which could be induced by tidal interactions with the planet, would make this star also a [[Gamma Doradus variable]].<ref name="cameron2010"/> This star has the GCVS variable star designation '''V807 Andromedae'''. <ref name=GCVSQF/>
Delta Scuti variables usually exhibit many [[Asteroseismology|pulsation modes]], and HD 15082 is no exception, with 8 measured high frequency p-modes.<ref name=Essen2014/> Another proposed non-radial mode, which could be induced by tidal interactions with the planet, would make this star also a [[Gamma Doradus variable]].<ref name="cameron2010"/> This star has the GCVS variable star designation '''V807 Andromedae'''. <ref name=GCVSQF/>

==Planetary system==
In 2006, the [[SuperWASP]] project announced the discovery of an [[extrasolar planet]], designated [[WASP-33b]], orbiting the star. The discovery was made by detecting the [[transit (astronomy)|transit]] of the planet as it passes in front of its star, an event which occurs every 1.22&nbsp;days.<ref name="Christian"/>


{{OrbitboxPlanet begin|table_ref=<ref name="cameron2010" /><ref name="Zhang2017"/><ref group="note">Parameters from the photometric + radial velocity solution in table 3 of Cameron ''et al.'' (2010). Different analysis methods result in slightly different parameters, see Cameron ''et al.'' (2010) for details.</ref>}}
{{OrbitboxPlanet begin|table_ref=<ref name="cameron2010" /><ref name="Zhang2017"/><ref group="note">Parameters from the photometric + radial velocity solution in table 3 of Cameron ''et al.'' (2010). Different analysis methods result in slightly different parameters, see Cameron ''et al.'' (2010) for details.</ref>}}

Revision as of 14:46, 10 November 2024

HD 15082

A light curve for V807 Andromedae (HD 15082), plotted from TESS data.[1] The deep minima are caused by the planet transits.
Observation data
Epoch J2000      Equinox J2000
Constellation Andromeda
Right ascension 02h 26m 51.0583s[2]
Declination +37° 33′ 01.736″[2]
Apparent magnitude (V) 8.3[3]
Characteristics
Spectral type A5[4]
B−V color index 0.27[5]
Variable type δ Sct[3]+Planetary transit variable
Astrometry
Radial velocity (Rv)−9.20±2.8[6] km/s
Proper motion (μ) RA: −0.977(35) mas/yr[2]
Dec.: −8.895(34) mas/yr[2]
Parallax (π)8.2238 ± 0.0327 mas[2]
Distance397 ± 2 ly
(121.6 ± 0.5 pc)
Details
Mass1.55 ± 0.04[7] M
Radius1.51[8] R
Surface gravity (log g)4.3 ± 0.2[3] cgs
Temperature7,400 ± 200[3] K
Metallicity [Fe/H]0.1 ± 0.2[7] dex
Rotational velocity (v sin i)86[3] km/s
Age100[9] Myr
Other designations
V807 And, BD+36 489, HD 15082, HIP 11397, SAO 55561, WASP-33, 2MASS J02265106+3733017, Gaia DR2 328636019723252096
Database references
SIMBADdata

HD 15082 (also known as WASP-33) is a star located roughly 397 light years away[2] in the northern constellation of Andromeda.[10] The star is a Delta Scuti variable[11] and a planetary transit variable. A hot Jupiter type extrasolar planet, named WASP-33b or HD 15082b, orbits this star with an orbital period of 1.22 days. It is the first Delta Scuti variable known to host a planet.[12]

Spectrum

HD 15082 is an Am star, which makes its stellar classification challenging to discern. The hydrogen lines and effective temperature of the star are similar to spectral type A8, however the calcium II K line resembles that of an A5 star, and the metallic lines are more similar to an F4 star. The spectral type is written kA5hA8mF4.[7]

Planetary system

In 2006, the SuperWASP project announced the discovery of an extrasolar planet, designated WASP-33b, orbiting the star. The discovery was made by detecting the transit of the planet as it passes in front of its star, an event which occurs every 1.22 days.[13]

Pulsations

The intrinsic variability of HD 15082 was discoved in 2011 by Enrique Herrero et al.[3] Delta Scuti variables usually exhibit many pulsation modes, and HD 15082 is no exception, with 8 measured high frequency p-modes.[11] Another proposed non-radial mode, which could be induced by tidal interactions with the planet, would make this star also a Gamma Doradus variable.[7] This star has the GCVS variable star designation V807 Andromedae. [14]

The HD 15082 planetary system[7][15][note 1]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b < 4.59 MJ 0.02558 (± 0.00023) 1.21987089 ± 1.5×10−07 0 87.67° 1.438 RJ

Notes

  1. ^ Parameters from the photometric + radial velocity solution in table 3 of Cameron et al. (2010). Different analysis methods result in slightly different parameters, see Cameron et al. (2010) for details.

References

  1. ^ "MAST: Barbara A. Mikulski Archive for Space Telescopes". Space Telescope Science Institute. Retrieved 8 December 2021.
  2. ^ a b c d e Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  3. ^ a b c d e f Herrero, E.; et al. (February 2011). "WASP-33: the first δ Scuti exoplanet host star". Astronomy and Astrophysics. 526: L10. arXiv:1010.1173. Bibcode:2011A&A...526L..10H. doi:10.1051/0004-6361/201015875. S2CID 37446555.
  4. ^ exoplanet.eu. "Planet WASP-33 b." The Extrasolar Planet Encyclopaedia - WASP-33 b, https://exoplanet.eu/catalog/wasp_33_b--671/
  5. ^ Høg, E.; Fabricius, C.; Makarov, V. V.; Urban, S.; Corbin, T.; Wycoff, G.; Bastian, U.; Schwekendiek, P.; Wicenec, A. (2000). "The Tycho-2 catalogue of the 2.5 million brightest stars". Astronomy & Astrophysics. 355: L27 – L30. Bibcode:2000A&A...355L..27H.
  6. ^ Gontcharov, G. A. (November 2006). "Pulkovo Compilation of Radial Velocities for 35 495 Hipparcos stars in a common system". Astronomy Letters. 32 (11): 759–771. arXiv:1606.08053. Bibcode:2006AstL...32..759G. doi:10.1134/S1063773706110065. S2CID 119231169.
  7. ^ a b c d e Collier Cameron, A.; et al. (2010). "Line-profile tomography of exoplanet transits - II. A gas-giant planet transiting a rapidly rotating A5 star". Monthly Notices of the Royal Astronomical Society. 407 (1): 507. arXiv:1004.4551. Bibcode:2010MNRAS.407..507C. doi:10.1111/j.1365-2966.2010.16922.x. S2CID 11989684.
  8. ^ Goyal, Jayesh M.; Mayne, Nathan; Sing, David K.; Drummond, Benjamin; Tremblin, Pascal; Amundsen, David S.; Evans, Thomas; Carter, Aarynn L.; Spake, Jessica; Baraffe, Isabelle; Nikolov, Nikolay; Manners, James; Chabrier, Gilles; Hebrard, Eric (2018). "A library of ATMO forward model transmission spectra for hot Jupiter exoplanets". Monthly Notices of the Royal Astronomical Society. 474 (4): 5158. arXiv:1710.10269. Bibcode:2018MNRAS.474.5158G. doi:10.1093/mnras/stx3015. hdl:10871/30324. S2CID 55105931.
  9. ^ Moya, A.; et al. (November 2011). "High spatial resolution imaging of the star with a transiting planet WASP-33". Astronomy & Astrophysics. 535: A110. arXiv:1110.3160. Bibcode:2011A&A...535A.110M. doi:10.1051/0004-6361/201116889. S2CID 54591538.
  10. ^ "WASP-33 b". ETD - Exoplanet Transit Database. Retrieved 2010-04-28.
  11. ^ a b von Essen, C.; Czesla, S.; Wolter, U.; Breger, M.; Herrero, E.; Mallonn, M.; Ribas, I.; Strassmeier, K. G.; Morales, J. C. (2014). "Pulsation analysis and its impact on primary transit modeling in WASP-33". Astronomy and Astrophysics. 561: A48. arXiv:1311.3614. Bibcode:2014A&A...561A..48V. doi:10.1051/0004-6361/201322453. S2CID 119213599.
  12. ^ "Discovery Of A Pulsating Star That Hosts A Giant Planet". Science Daily. January 19, 2011.
  13. ^ Christian, D. J.; Pollacco, D. L.; Skillen, I.; Street, R. A.; Keenan, F. P.; Clarkson, W. I.; Collier Cameron, A.; Kane, S. R.; Lister, T. A.; West, R. G.; Enoch, B.; Evans, A.; Fitzsimmons, A.; Haswell, C. A.; Hellier, C.; Hodgkin, S. T.; Horne, K.; Irwin, J.; Norton, A. J.; Osborne, J. (November 2006). "The SuperWASP wide-field exoplanetary transit survey: candidates from fields 23 h < RA < 03 h". Monthly Notices of the Royal Astronomical Society. 372 (3): 1117–1128. Bibcode:2006MNRAS.372.1117C. doi:10.1111/j.1365-2966.2006.10913.x. Retrieved 10 November 2024.
  14. ^ "GCVS Query forms".
  15. ^ Zhang, Michael; et al. (2017). "Phase curves of WASP-33b and HD 149026b and a New Correlation Between Phase Curve Offset and Irradiation Temperature". The Astronomical Journal. 155 (2): 83. arXiv:1710.07642. Bibcode:2018AJ....155...83Z. doi:10.3847/1538-3881/aaa458. S2CID 54755276.