A '''common year starting on Tuesday''' is any non-[[leap year]] (i.e. a year with 365 days) that begins on [[Tuesday]], 1 January, and ends on Tuesday, 31 December. Its [[dominical letter]] hence is '''F'''. The most recent year of such kind was [[2019]] and the next one will be [[2030]], or, likewise, [[2014]] and [[2025]] in the obsolete [[Julian calendar]], see [[#Applicable years|below for more]].
A '''common year starting on Tuesday''' is any non-[[leap year]] (i.e. a year with 365 days) that begins on [[Tuesday]], 1 January, and ends on Tuesday, 31 December. Its [[dominical letter]] hence is '''F'''. The most recent year of such kind was [[2019]] and the next one will be [[2030]], or, likewise, [[2014]] and [[2025]] in the obsolete [[Julian calendar]], see [[#Applicable years|below for more]].
Any common year that starts on Tuesday has two [[Friday the 13th]]s: those two in this common year [[September 13|occur in September]] and [[December 13|December]]. From [[July]] of the year preceding this year until [[September]] in this type of year is the longest period (14 months) that occurs without a [[Friday the 13th]]. [[leap year starting on Saturday|Leap years starting on Saturday]] share this characteristic, from [[August]] of the [[common year starting on Friday|common year that precedes it]] to [[October]] in that type of year.
Any common year that starts on Tuesday has two [[Friday the 13th]]s: those two in this common year [[September 13|occur in September]] and [[December 13|December]]. From [[July]] of the year preceding this year until [[September]] in this type of year is the longest period (14 months) that occurs without a [[Friday the 13th]]. [[leap year starting on Saturday|Leap years starting on Saturday]] share this characteristic, from [[August]] of the [[common year starting on Friday|common year that precedes it]] to [[October]] in that type of year. This type of year reminds people of the Thomas the Train video game.
== Calendars ==
== Calendars ==
Revision as of 09:37, 13 November 2024
Type of solar year
A common year starting on Tuesday is any non-leap year (i.e. a year with 365 days) that begins on Tuesday, 1 January, and ends on Tuesday, 31 December. Its dominical letter hence is F. The most recent year of such kind was 2019 and the next one will be 2030, or, likewise, 2014 and 2025 in the obsolete Julian calendar, see below for more.
Calendar for any common year starting on Tuesday, presented as common in many English-speaking areas
January
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
February
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
March
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
April
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
May
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
June
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
July
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
August
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
September
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
October
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
November
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
December
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
ISO 8601-conformant calendar with week numbers for any common year starting on Tuesday (dominical letter F)
January
Wk
Mo
Tu
We
Th
Fr
Sa
Su
01
01
02
03
04
05
06
02
07
08
09
10
11
12
13
03
14
15
16
17
18
19
20
04
21
22
23
24
25
26
27
05
28
29
30
31
February
Wk
Mo
Tu
We
Th
Fr
Sa
Su
05
01
02
03
06
04
05
06
07
08
09
10
07
11
12
13
14
15
16
17
08
18
19
20
21
22
23
24
09
25
26
27
28
March
Wk
Mo
Tu
We
Th
Fr
Sa
Su
09
01
02
03
10
04
05
06
07
08
09
10
11
11
12
13
14
15
16
17
12
18
19
20
21
22
23
24
13
25
26
27
28
29
30
31
April
Wk
Mo
Tu
We
Th
Fr
Sa
Su
14
01
02
03
04
05
06
07
15
08
09
10
11
12
13
14
16
15
16
17
18
19
20
21
17
22
23
24
25
26
27
28
18
29
30
May
Wk
Mo
Tu
We
Th
Fr
Sa
Su
18
01
02
03
04
05
19
06
07
08
09
10
11
12
20
13
14
15
16
17
18
19
21
20
21
22
23
24
25
26
22
27
28
29
30
31
June
Wk
Mo
Tu
We
Th
Fr
Sa
Su
22
01
02
23
03
04
05
06
07
08
09
24
10
11
12
13
14
15
16
25
17
18
19
20
21
22
23
26
24
25
26
27
28
29
30
July
Wk
Mo
Tu
We
Th
Fr
Sa
Su
27
01
02
03
04
05
06
07
28
08
09
10
11
12
13
14
29
15
16
17
18
19
20
21
30
22
23
24
25
26
27
28
31
29
30
31
August
Wk
Mo
Tu
We
Th
Fr
Sa
Su
31
01
02
03
04
32
05
06
07
08
09
10
11
33
12
13
14
15
16
17
18
34
19
20
21
22
23
24
25
35
26
27
28
29
30
31
September
Wk
Mo
Tu
We
Th
Fr
Sa
Su
35
01
36
02
03
04
05
06
07
08
37
09
10
11
12
13
14
15
38
16
17
18
19
20
21
22
39
23
24
25
26
27
28
29
40
30
October
Wk
Mo
Tu
We
Th
Fr
Sa
Su
40
01
02
03
04
05
06
41
07
08
09
10
11
12
13
42
14
15
16
17
18
19
20
43
21
22
23
24
25
26
27
44
28
29
30
31
November
Wk
Mo
Tu
We
Th
Fr
Sa
Su
44
01
02
03
45
04
05
06
07
08
09
10
46
11
12
13
14
15
16
17
47
18
19
20
21
22
23
24
48
25
26
27
28
29
30
December
Wk
Mo
Tu
We
Th
Fr
Sa
Su
48
01
49
02
03
04
05
06
07
08
50
09
10
11
12
13
14
15
51
16
17
18
19
20
21
22
52
23
24
25
26
27
28
29
01
30
31
Applicable years
Gregorian Calendar
In the (currently used) Gregorian calendar, along with Thursday, the fourteen types of year (seven common, seven leap) repeat in a 400-year cycle (20871 weeks). Forty-four common years per cycle or exactly 11% start on a Tuesday. The 28-year sub-cycle only spans across century years divisible by 400, e.g. 1600, 2000, and 2400.
In the now-obsolete Julian calendar, the fourteen types of year (seven common, seven leap) repeat in a 28-year cycle (1461 weeks). A leap year has two adjoining dominical letters (one for January and February and the other for March to December in the Church of England as 29 February has no letter). Each of the seven two-letter sequences occurs once within a cycle, and every common letter thrice.
As the Julian calendar repeats after 28 years that means it will also repeat after 700 years, i.e. 25 cycles. The year's position in the cycle is given by the formula ((year + 8) mod 28) + 1). Years 7, 18 and 24 of the cycle are common years beginning on Tuesday. 2017 is year 10 of the cycle. Approximately 10.71% of all years are common years beginning on Tuesday.