Kravchuk polynomials: Difference between revisions
Appearance
Content deleted Content added
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
'''Kravchuk polynomials''' or '''Krawtchouk polynomials''' are classical [[orthogonal polynomials]] associated with the [[binomial distribution]], introduced by the [[Ukrainian]] [[mathematician]] [[Mikhail Kravchuk]] in 1929. |
'''Kravchuk polynomials''' or '''Krawtchouk polynomials''' are classical [[orthogonal polynomials]] associated with the [[binomial distribution]], introduced by the [[Ukrainian]] [[mathematician]] [[Mikhail Kravchuk]] in 1929.<ref>Sur une généralisation des polynomes d'Hermite. Note de M.Krawtchouk, C.R.Acad. Sci. 1929. T.189, No.17. P.620 - 622. </ref> |
||
The Kravchuk polynomials are a special case of the [[Meixner polynomials]] of |
The Kravchuk polynomials are a special case of the [[Meixner polynomials]] of the first kind. |
||
==References== |
==References== |
||
<references/> |
|||
*Nikiforov, A. F., Suslov, S. K. and Uvarov, V. B., "Classical Orthogonal Polynomials of a Discrete Variable". [[Springer-Verlag]], Berlin-Heidelberg-New York, 1991. |
*Nikiforov, A. F., Suslov, S. K. and Uvarov, V. B., "Classical Orthogonal Polynomials of a Discrete Variable". [[Springer-Verlag]], Berlin-Heidelberg-New York, 1991. |
||
Revision as of 06:15, 1 May 2007
Kravchuk polynomials or Krawtchouk polynomials are classical orthogonal polynomials associated with the binomial distribution, introduced by the Ukrainian mathematician Mikhail Kravchuk in 1929.[1]
The Kravchuk polynomials are a special case of the Meixner polynomials of the first kind.
References
- ^ Sur une généralisation des polynomes d'Hermite. Note de M.Krawtchouk, C.R.Acad. Sci. 1929. T.189, No.17. P.620 - 622.
- Nikiforov, A. F., Suslov, S. K. and Uvarov, V. B., "Classical Orthogonal Polynomials of a Discrete Variable". Springer-Verlag, Berlin-Heidelberg-New York, 1991.