Jump to content

Kravchuk polynomials: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
No edit summary
Line 1: Line 1:
'''Kravchuk polynomials''' or '''Krawtchouk polynomials''' are classical [[orthogonal polynomials]] associated with the [[binomial distribution]], introduced by the [[Ukrainian]] [[mathematician]] [[Mikhail Kravchuk]] in 1929.
'''Kravchuk polynomials''' or '''Krawtchouk polynomials''' are classical [[orthogonal polynomials]] associated with the [[binomial distribution]], introduced by the [[Ukrainian]] [[mathematician]] [[Mikhail Kravchuk]] in 1929.<ref>Sur une généralisation des polynomes d'Hermite. Note de M.Krawtchouk, C.R.Acad. Sci. 1929. T.189, No.17. P.620 - 622. </ref>


The Kravchuk polynomials are a special case of the [[Meixner polynomials]] of ythe first kind
The Kravchuk polynomials are a special case of the [[Meixner polynomials]] of the first kind.


==References==
==References==
<references/>
*Nikiforov, A. F., Suslov, S. K. and Uvarov, V. B., "Classical Orthogonal Polynomials of a Discrete Variable". [[Springer-Verlag]], Berlin-Heidelberg-New York, 1991.
*Nikiforov, A. F., Suslov, S. K. and Uvarov, V. B., "Classical Orthogonal Polynomials of a Discrete Variable". [[Springer-Verlag]], Berlin-Heidelberg-New York, 1991.



Revision as of 06:15, 1 May 2007

Kravchuk polynomials or Krawtchouk polynomials are classical orthogonal polynomials associated with the binomial distribution, introduced by the Ukrainian mathematician Mikhail Kravchuk in 1929.[1]

The Kravchuk polynomials are a special case of the Meixner polynomials of the first kind.

References

  1. ^ Sur une généralisation des polynomes d'Hermite. Note de M.Krawtchouk, C.R.Acad. Sci. 1929. T.189, No.17. P.620 - 622.
  • Nikiforov, A. F., Suslov, S. K. and Uvarov, V. B., "Classical Orthogonal Polynomials of a Discrete Variable". Springer-Verlag, Berlin-Heidelberg-New York, 1991.