Jump to content

Crystal: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted to revision 132453075 by Stephenb; Lost content. using TWINKLE
Line 20: Line 20:


Most crystalline materials have a variety of [[crystallographic defect]]s. The types and structures of these defects can have a profound effect on the properties of the materials.
Most crystalline materials have a variety of [[crystallographic defect]]s. The types and structures of these defects can have a profound effect on the properties of the materials.

Crystal Hulsey


==Other meanings and characteristics==
==Other meanings and characteristics==

Revision as of 22:00, 21 May 2007

Quartz crystal
Synthetic bismuth hopper crystal
Insulin crystals
Gallium, a metal that easily forms large single crystals
A huge monocrystal of potassium dihydrogen phosphate grown from solution by Saint-Gobain for the megajoule laser of CEA.

In chemistry and mineralogy, a crystal is a solid in which the constituent atoms, molecules, or ions are packed in a regularly ordered, repeating pattern extending in all three spatial dimensions.

The word crystals originates from the Greek word "Krystallos" meaning clear ice, and once referred particularly to quartz, rock crystal.

Most metals encountered in everyday life are polycrystals. Crystals are often symmetrically intergrown to form crystal twins.

Crystal structure

Which crystal structure the fluid will form depends on the chemistry of the fluid, the conditions under which it is being solidified, and also on the ambient pressure. The process of forming a crystalline structure is often referred to as crystallization.

While the cooling process usually results in the generation of a crystalline material, under certain conditions, the fluid may be frozen in a noncrystalline state. In most cases, this involves cooling the fluid so rapidly that atoms cannot travel to their lattice sites before they lose mobility. A noncrystalline material, which has no long-range order, is called an amorphous, vitreous, or glassy material. It is also often referred to as an amorphous solid, although there are distinct differences between solids and glasses: most notably, the process of forming a glass does not release the latent heat of fusion. For this thermodynamic reason, many scientists consider glassy materials to be viscous liquids rather than solids, although this is a controversial topic; see the entry on glass for more details.

Crystalline structures occur in all classes of materials, with all types of chemical bonds. Almost all metal exists in a polycrystalline state; amorphous or single-crystal metals must be produced synthetically, often with great difficulty. Ionically bonded crystals can form upon solidification of salts, either from a molten fluid or when it condenses from a solution. Covalently bonded crystals are also very common, notable examples being diamond, silica, and graphite. Polymer materials generally will form crystalline regions, but the lengths of the molecules usually prevents complete crystallization. Weak Van der Waals forces can also play a role in a crystal structure; for example, this type of bonding loosely holds together the hexagonal-patterned sheets in graphite.

Most crystalline materials have a variety of crystallographic defects. The types and structures of these defects can have a profound effect on the properties of the materials.

Crystal Hulsey

Other meanings and characteristics

While the term "crystal" has a precise meaning within materials science and solid-state physics, colloquially "crystal" refers to solid objects that exhibit well-defined and often pleasing geometric shapes. In this sense of the word, many types of crystals are found in nature. The shape of these crystals is dependent on the types of molecular bonds between the atoms to determine the structure, as well as on the conditions under which they formed. Snowflakes, diamonds, and common salt are common examples of crystals.

Some crystalline materials may exhibit special electrical properties such as the ferroelectric effect or the piezoelectric effect. Additionally, light passing through a crystal is often refracted or bent in different directions, producing an array of colors; crystal optics is the study of these effects. In periodic dielectric structures a range of unique optical properties can be expected as described in photonic crystals.

Crystallography is the scientific study of crystals and crystal formation.

Crystalline rocks

Inorganic matter, if free to take that physical state in which it is most stable, always tends to crystallize. Crystalline rock masses have consolidated from solution or from fusion. The vast majority of igneous rocks belong to this group and the degree of perfection in which they have attained the crystalline state depends primarily on the conditions under which they solidified. Such rocks as granite, which have cooled very slowly and under great pressures, have completely crystallized, but many lavas were poured out at the surface and cooled very rapidly; in this latter group a small amount of non-crystalline or glassy matter is frequent. Other crystalline rocks such as rock salt, gypsum and anhydrite have been deposited from solution in water, mostly owing to evaporation on exposure to the air. Still another group, which includes the marbles, mica-schists and quartzites, are recrystallized, that is to say, they were at first fragmental rocks, like limestone, clay and sandstone and have never been in a molten condition nor entirely in solution. Certain agencies however, acting on them, have effaced their primitive structures, and induced crystallization. This is a kind of metamorphism.[1]

See also

References

  1. ^ Public Domain This article incorporates text from a publication now in the public domainChisholm, Hugh, ed. (1911). "Petrology". Encyclopædia Britannica (11th ed.). Cambridge University Press.