Jump to content

Stable manifold: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Apoc107 (talk | contribs)
Apoc107 (talk | contribs)
No edit summary
Line 34: Line 34:


Suppose now that <math>X</math> is a [[compact]] [[smooth manifold]], and <math>f</math> is a <math>\mathcal{C}^k</math> [[diffeomorphism]], <math>k\geq 1</math>. If <math>p</math> is a hyperbolic periodic point, the [[stable manifold theorem]] assures that for some neighborhood <math>U</math> of <math>p</math>, the local stable and unstable sets are <math>\mathcal{C}^k</math> embedded disks, whose [[tangent space]]s at <math>p</math> are <math>E^s</math> and <math>E^u</math> (the stable and unstable spaces of <math>Df(p)</math>), respectively; moreover, they vary continuously (in a certain sense) in a neighborhood of <math>f</math> in the <math>\mathcal{C}^k</math> topology of <math>\mathrm{Diff}^k(X)</math> (the space of all <math>\mathcal{C}^k</math> diffeomorphisms from <math>X</math> to itself). Finally, the stable and unstable sets are <math>\mathcal{C}^k</math> injectively immersed disks. This is why they are commonly called '''stable and unstable manifolds'''. This result is also valid for nonperiodic points, as long as they lie in some [[hyperbolic set]] (stable manifold theorem for hyperbolic sets).
Suppose now that <math>X</math> is a [[compact]] [[smooth manifold]], and <math>f</math> is a <math>\mathcal{C}^k</math> [[diffeomorphism]], <math>k\geq 1</math>. If <math>p</math> is a hyperbolic periodic point, the [[stable manifold theorem]] assures that for some neighborhood <math>U</math> of <math>p</math>, the local stable and unstable sets are <math>\mathcal{C}^k</math> embedded disks, whose [[tangent space]]s at <math>p</math> are <math>E^s</math> and <math>E^u</math> (the stable and unstable spaces of <math>Df(p)</math>), respectively; moreover, they vary continuously (in a certain sense) in a neighborhood of <math>f</math> in the <math>\mathcal{C}^k</math> topology of <math>\mathrm{Diff}^k(X)</math> (the space of all <math>\mathcal{C}^k</math> diffeomorphisms from <math>X</math> to itself). Finally, the stable and unstable sets are <math>\mathcal{C}^k</math> injectively immersed disks. This is why they are commonly called '''stable and unstable manifolds'''. This result is also valid for nonperiodic points, as long as they lie in some [[hyperbolic set]] (stable manifold theorem for hyperbolic sets).
==Remark==

If <math>X</math> is a (finite dimensional) vector space and <math>f</math> an isomorphism, its stable and unstable sets are called [[stable space]] and [[unstable space]], respectively.
==See also==
==See also==
* [[Limit set]]
* [[Limit set]]

Revision as of 22:01, 27 November 2007

In mathematics, and in particular the study of dynamical systems, the idea of stable and unstable sets or stable and unstable manifolds give a formal mathematical definition to the general notions embodied in the idea of an attractor or repellor. In the case of hyperbolic dynamics, the corresponding notion is that of the hyperbolic set.

Definition

The following provides a definition for the case of a system that is either an iterated function or has discrete-time dynamics. Similar notions apply for systems whose time evolution is given by a flow.

Let be a topological space, and a homeomorphism. If is a fixed point for , the stable set of is defined by

and the unstable set of is defined by

Here, denotes the inverse of the function , i.e. , where is the identity map on .

If is a periodic point of least period , then it is a fixed point of , and the stable and unstable sets of are

and

Given a neighborhood of , the local stable and unstable sets of are defined by

and

If is metrizable, we can define the stable and unstable sets for any point by

and

where is a metric for . This definition clearly coincides with the previous one when is a periodic point.

Suppose now that is a compact smooth manifold, and is a diffeomorphism, . If is a hyperbolic periodic point, the stable manifold theorem assures that for some neighborhood of , the local stable and unstable sets are embedded disks, whose tangent spaces at are and (the stable and unstable spaces of ), respectively; moreover, they vary continuously (in a certain sense) in a neighborhood of in the topology of (the space of all diffeomorphisms from to itself). Finally, the stable and unstable sets are injectively immersed disks. This is why they are commonly called stable and unstable manifolds. This result is also valid for nonperiodic points, as long as they lie in some hyperbolic set (stable manifold theorem for hyperbolic sets).

Remark

If is a (finite dimensional) vector space and an isomorphism, its stable and unstable sets are called stable space and unstable space, respectively.

See also

References

  • Ralph Abraham and Jerrold E. Marsden, Foundations of Mechanics, (1978) Benjamin/Cummings Publishing, Reading Mass. ISBN 0-8053-0102-X

Stable manifold at PlanetMath.