Jump to content

Talk:Thomae's function: Difference between revisions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Content deleted Content added
Rating article for WikiProject Mathematics. Quality: Start Priority: Low Field: analysis (script assisted)
Line 1: Line 1:
{{maths rating|field=analysis}}
{{maths rating|class=Start|priority=Low|field=analysis}}

{{talkheader}}
{{talkheader}}



Revision as of 17:20, 4 December 2007

WikiProject iconMathematics Start‑class Low‑priority
WikiProject iconThis article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
LowThis article has been rated as Low-priority on the project's priority scale.

"Thomae's function" vs "popcorn function"

I don't have enough analysis books to do a comprehensive count, but in every book I have, this is called Thomae's Function. I know it isn't that big a deal, but "popcorn function" is so terribly informal, whereas "Thomae's function" falls in line with so many other functions whose names are called "[name]'s function" or "[name] function" or similar. Look at List of mathematical functions and tell me how many are named after people vs how many are named after food that they (apparently) resemble. Even the closest relative to this function is named properly, as the Dirichlet function (although it is in nowhere continuous function due to a merge of some sort). That section in the list includes several functions of this exact type (canonical examples/counterexamples in elementary analysis), all of which are named after people. So anyway, sorry about rambling a bit, I propose that we move it to Thomae's function, and redirect this page there. I just feel like maybe next we'll move Error function to ski-slope function (yes, I know, I'm being sarcastic). Any opinions? --Cheeser1 05:01, 27 July 2007 (UTC)[reply]

OK, I did the move. Oleg Alexandrov (talk) 02:05, 24 August 2007 (UTC)[reply]

f(0)?

What is the value of f at 0? I would assume it to be 0 but I have no reference for this. --89.12.119.20 18:58, 12 August 2007 (UTC)[reply]

Notice that 0 is rational, and in least terms, 0=0/1. Least terms are ensured by the stipulation that gcd(p,q)=1. Thus f(0) = 1. If f(0)=0, then the function would be continuous there - this would violate the conclusion that f is discontinuous at rational points. --Cheeser1 21:16, 12 August 2007 (UTC)[reply]

Newer image with higher resolution

I uploaded a newer version with a higher resolution (Image:Popcorn function plot bars.png, even a SVG version up to denomiator 750 (Image:Popcorn function plot bars.svg), but this is not working at the moment, see commons:Commons:Help_desk#SVG_too_big.2C_.svg.gz__or_.svgz_was_not_accepted. What do you think? --84.72.190.27 (talk) 10:01, 27 November 2007 (UTC)[reply]