Ordinal analysis: Difference between revisions
→Theories with proof theoretic ordinal the Bachmann-Howard ordinal: link to large countable ordinals |
m →Theories with proof theoretic ordinal the Feferman-Schütte ordinal Γ0: link to large countable ordinals |
||
Line 14: | Line 14: | ||
*Gentzen showed using [[cut elimination]] that the proof theoretic ordinal of [[Peano arithmetic]] is [[epsilon zero|ε<sub>0</sub>]]. |
*Gentzen showed using [[cut elimination]] that the proof theoretic ordinal of [[Peano arithmetic]] is [[epsilon zero|ε<sub>0</sub>]]. |
||
*<math>\mathsf{ACA}_0</math>, [[Arithmetical comprehension]]. |
*<math>\mathsf{ACA}_0</math>, [[Arithmetical comprehension]]. |
||
===Theories with proof theoretic ordinal the [[Feferman-Schütte ordinal]] Γ<sub>0</sub>=== |
===Theories with proof theoretic ordinal the [[Large countable ordinals#The Feferman-Schütte ordinal and beyond|Feferman-Schütte ordinal]] Γ<sub>0</sub>=== |
||
This ordinal is sometimes considered to be the upper limit for "predicative" theories. |
This ordinal is sometimes considered to be the upper limit for "predicative" theories. |
||
*<math>\mathsf{ATR}_0</math>, [[Arithmetical Transfinite Recursion]] has proof theoretic ordinal the [[Feferman-Schütte ordinal]] Γ<sub>0</sub>. |
*<math>\mathsf{ATR}_0</math>, [[Arithmetical Transfinite Recursion]] has proof theoretic ordinal the [[Feferman-Schütte ordinal]] Γ<sub>0</sub>. |
||
===Theories with proof theoretic ordinal the [[Large countable ordinal#Impredicative ordinals|Bachmann-Howard ordinal]]=== |
===Theories with proof theoretic ordinal the [[Large countable ordinal#Impredicative ordinals|Bachmann-Howard ordinal]]=== |
||
* [[Kripke-Platek set theory]] |
* [[Kripke-Platek set theory]] |
Revision as of 18:58, 4 March 2008
In proof theory, ordinal analysis assigns ordinals to mathematical theories as a measure of their strength.
Definition
All theories discussed are assumed to be recursive countable theories, and are assume to be powerful enough to make statements about the natural numbers.
The proof theoretic ordinal of a theory is the smallest recursive ordinal that the theory cannot prove is well founded. More accurately, the proof theoretic ordinal of the theory can be defined the supremum of all ordinals for which there exists a notation in Kleene's sense such that proves that is, indeed, an ordinal notation; or equivalently, as the supremum of all ordinals such that there exists a recursive relation on (the set of natural numbers) which well-orders it with ordinal and such that proves transfinite induction of arithmetical statements for .
The proof theoretic ordinal of a theory is a countable ordinal less than the Church-Kleene ordinal. It is in practice a good measure of the strength of a theory. If theories have the same proof theoretic ordinal they are often equiconsistent, and if one has a larger proof theoretic ordinal than another it can often prove the consistence of the second theory.
Examples
Theories with proof theoretic ordinal ωω
- , Recursive Comprehension has proof theoretic ordinal ωω.
- , Weak König's lemma has proof theoretic ordinal ωω.
Theories with proof theoretic ordinal ε0
- Gentzen showed using cut elimination that the proof theoretic ordinal of Peano arithmetic is ε0.
- , Arithmetical comprehension.
Theories with proof theoretic ordinal the Feferman-Schütte ordinal Γ0
This ordinal is sometimes considered to be the upper limit for "predicative" theories.
- , Arithmetical Transfinite Recursion has proof theoretic ordinal the Feferman-Schütte ordinal Γ0.
Theories with proof theoretic ordinal the Bachmann-Howard ordinal
Theories with larger proof theoretic ordinals
Most theories capable of describing the power set of the natural numbers have prrof theoretic ordinals that are (as of 2008) too large to describe "explicitly". This includes second order arithmetic and all but the weakest set theories.
References
- Pohlers, W., Proof theory