Jump to content

Portal:Science: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Gwernol (talk | contribs)
m Reverted edits by 69.131.165.205 (talk) to last version by Spencer
No edit summary
Line 4: Line 4:
----
----


this is not correct
{{Science portalbar}}
{{Science portalbar}}
<!-- This portal was created using subst:box portal skeleton| topic=Science| -->
<!-- This portal was created using subst:box portal skeleton| topic=Science| -->

Revision as of 20:24, 1 May 2008


this is not correct
Main page   Main topics & Categories   Related portals & WikiProjects   Things you can do
edit

Science portal

The water molecule

Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and predictions about the universe. Modern science is typically divided into two or three major branches: the natural sciences (e.g., physics, chemistry, and biology), which study the physical world; and the behavioural sciences (e.g., economics, psychology, and sociology), which study individuals and societies. The formal sciences (e.g., logic, mathematics, and theoretical computer science), which study formal systems governed by axioms and rules, are sometimes described as being sciences as well; however, they are often regarded as a separate field because they rely on deductive reasoning instead of the scientific method or empirical evidence as their main methodology. Applied sciences are disciplines that use scientific knowledge for practical purposes, such as engineering and medicine.

The history of science spans the majority of the historical record, with the earliest identifiable predecessors to modern science dating to the Bronze Age in Egypt and Mesopotamia (c. 3000–1200 BCE). Their contributions to mathematics, astronomy, and medicine entered and shaped the Greek natural philosophy of classical antiquity, whereby formal attempts were made to provide explanations of events in the physical world based on natural causes, while further advancements, including the introduction of the Hindu–Arabic numeral system, were made during the Golden Age of India. Scientific research deteriorated in these regions after the fall of the Western Roman Empire during the Early Middle Ages (400–1000 CE), but in the Medieval renaissances (Carolingian Renaissance, Ottonian Renaissance and the Renaissance of the 12th century) scholarship flourished again. Some Greek manuscripts lost in Western Europe were preserved and expanded upon in the Middle East during the Islamic Golden Age, along with the later efforts of Byzantine Greek scholars who brought Greek manuscripts from the dying Byzantine Empire to Western Europe at the start of the Renaissance.

The recovery and assimilation of Greek works and Islamic inquiries into Western Europe from the 10th to 13th centuries revived natural philosophy, which was later transformed by the Scientific Revolution that began in the 16th century as new ideas and discoveries departed from previous Greek conceptions and traditions. The scientific method soon played a greater role in knowledge creation and it was not until the 19th century that many of the institutional and professional features of science began to take shape, along with the changing of "natural philosophy" to "natural science".

New knowledge in science is advanced by research from scientists who are motivated by curiosity about the world and a desire to solve problems. Contemporary scientific research is highly collaborative and is usually done by teams in academic and research institutions, government agencies, and companies. The practical impact of their work has led to the emergence of science policies that seek to influence the scientific enterprise by prioritising the ethical and moral development of commercial products, armaments, health care, public infrastructure, and environmental protection. (Full article...)

Selected article

The Grand Canyon from Navajo Point
The geology of the Grand Canyon area exposes one of the most complete sequences of rock anywhere, representing a period of nearly 2 billion years of the Earth's history in that part of North America. The major sedimentary rock layers exposed in the Grand Canyon and in the Grand Canyon National Park area range in age from 200 million to nearly 2 billion years old. Most were deposited in warm, shallow seas and near ancient, long-gone sea shores. Both marine and terrestrial sediments are represented, including fossilized sand dunes from an extinct desert.

Uplift of the region started about 75 million years ago in the Laramide orogeny, a mountain-building event that is largely responsible for creating the Rocky Mountains to the east. Accelerated uplift started 17 million years ago when the Colorado Plateaus (on which the area is located) were being formed. In total these layers were uplifted an estimated 10,000 feet (3000 m) which enabled the ancestral Colorado River to cut its channel into the four plateaus that constitute this area. But the canyon did not start to form until 5.3 million years ago when the Gulf of California opened up and thus lowered the river's base level (its lowest point) from that of large inland lakes to sea level.

Selected picture

Sonoluminescence is the emission of light by bubbles in a liquid excited by sound.
Sonoluminescence is the emission of light by bubbles in a liquid excited by sound.
Sonoluminescence is the emission of short bursts of light from imploding bubbles in a liquid when excited by sound. The effect was first discovered at the University of Cologne in 1934 as a result of work on sonar. H. Frenzel and H. Schultes put an ultrasound transducer in a tank of photographic developer fluid. They hoped to speed up the development process. Instead, they noticed tiny dots on the film after developing, and realized that the bubbles in the fluid were emitting light with the ultrasound turned on. It was too difficult to analyze the effect in early experiments because of the complex environment of a large number of short-lived bubbles. (This experiment is also ascribed to N. Marinesco and J.J. Trillat in 1933). Sonoluminescence may or may not occur whenever a sound wave of sufficient intensity induces a gaseous cavity within a liquid to quickly collapse. This cavity may take the form of a pre-existing bubble, or may be generated through a process known as cavitation. Sonoluminescence in the laboratory can be made to be stable, so that a single bubble will expand and collapse over and over again in a periodic fashion, emitting a burst of light each time it collapses.

Selected biography

Barbara McClintock (June 16, 1902 – September 2, 1992) was a pioneering American scientist and one of the world's most distinguished cytogeneticists. McClintock received her PhD in botany from Cornell University in 1927, where she was a leader in the development of maize cytogenetics. The field remained the focus of her research for the rest of her career. From the late 1920s, McClintock studied chromosomes and how they change during reproduction in maize. She developed the technique to visualize maize chromosomes and demonstrate genetic recombination by crossing-over during meiosis—a mechanism by which chromosomes exchange information. She produced the first genetic map for maize, and she demonstrated the role of the telomere and centromere. She was awarded prestigious fellowships and elected a member of the National Academy of Sciences in 1944.

Did you know...

by Jon Lomberg

Purge server cache

Template:Featured portal