Jump to content

Talk:Persistent data structure: Difference between revisions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Content deleted Content added
Dcoetzee (talk | contribs)
Vlists: new section
Line 32: Line 32:


:In a functional language you don't ``change`` data structures, you create new ones. If you create a new data structure from an old one there is no reason why your reference to the old one should be lost unless you choose to lose it. --[[User:MarSch|MarSch]] ([[User talk:MarSch|talk]]) 12:03, 13 February 2008 (UTC)
:In a functional language you don't ``change`` data structures, you create new ones. If you create a new data structure from an old one there is no reason why your reference to the old one should be lost unless you choose to lose it. --[[User:MarSch|MarSch]] ([[User talk:MarSch|talk]]) 12:03, 13 February 2008 (UTC)

== Vlists ==

I have removed the reference to the [[Vlist]] data structure. Vlists are not really a "persistent counterpart to the array". They are not persistent at all if you update them as an array. They do allow O(1) random read access if you update them as a list, but that's only if you update them in a partially persistent way. If you update them in a fully persistent way, then the random read access is not efficient.

Revision as of 07:40, 21 May 2008

I think this article needs to be merged from or to Purely functional. Persistent data structure is a better name for the page (functional is an adjective which therefore violates Wikipedia naming conventions). On the other hand, purely functional has some nice diagrams which I drew to explain the concept :-) What does everyone think? Richard W.M. Jones 18:52, 17 January 2006 (UTC)[reply]

I've never seen "persistent data structure" used in the way this article describes. It may be used that way in some obscure book or two, but in my experience, a persistent data structure is one that is automatically saved when the program exits, as is described in the link to persistence. Dave Gudeman 04:40, 29 August 2006 (UTC)[reply]

It's a matter of your field of study. The sense in which you use it is encountered in some papers on OODBMS's. But the functional data structure meaning is widely known in research (everyone I've talked to about them immediately understood) and used in an entire subfield of widely cited papers. To list a few:

  • J. Driscoll, N. Sarnak, D. D. Sleator, and R. Tarjan. Making Data Structures Persistent. Journal of Computer and System Sciences, 38:86--124, 1989. [1] (123 citations)
  • N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Communications of the ACM, 29(7):669--679, 1986. [2] (115 citations)
  • P. F. Dietz. Fully persistent arrays. In Workshop on Algorithms and Data Structures, volume 382 of Lecture Notes in Computer Science, pages 67--74. SpringerVerlag, August 1989. [3] (28 citations)
  • J. Driscoll, D. Sleator, and R. Tarjan. Fully persistent lists with catenation. Journal of the ACM, 41(5):943-959, 1994. [4] (22 citations)
  • Okasaki, C. (1998). Purely Functional Data Structures. Cambridge University Press. [5][6] (104 citations) Used throughout this seminal book, occuring dozens of times. Section 9.2 is entitle "Persistent Data Structures".

The name collision with the idea of disk-persisted data structures is unfortunate, and I wouldn't object to adding a note to clarify this. Deco 05:36, 29 August 2006 (UTC)[reply]

Not all purely functional data structures are persistent

For example, consider a queue. A standard representation user two lists, one reversed. When adding an element we add it to the first list, when removing an element we remove it from the second. When the second list is empty and we want to remove an element from the queue, we have to reverse the first list (reversal is O(N)), and this list becomes the new second list. We can remove the element from the second list now. Because we don't have to reverse most of the time, this queue is amortized O(1). But occasionally O(N)!

This queue is *not* persistent: what if we have a queue with an empty second list, and a nonempty first list of length N. When we use this list several times, and remove elements from it several times, the remove takes O(N) time. So this is no longer an O(1) queue! —Preceding unsigned comment added by 84.25.34.87 (talk) 18:31, 12 October 2007 (UTC)[reply]

If you want to claim non-persistence, then why do you argue inefficiency of implementation? Nothing prevents this data structure from being persistent AFAICT. --MarSch (talk) 12:06, 13 February 2008 (UTC)[reply]
Persistence has nothing to do with the amortized runtime of the operations. Additionally, you're wrong - the remove takes amortized O(1) time - this means that a sequence of n insert and remove operations takes O(n) time. See amortized analysis. Dcoetzee 20:10, 13 February 2008 (UTC)[reply]

Not persistant at all

I would argue there is no implicit persistance. Although there is internal reference sharing, as is the case with list types in ML, there is no way to implicitly refer to these elements in the list. The programmer would have to declare variables for every sublist they wanted a reference to, but changing that reference would create a new list. Specificaly a list which references the values of the old list to the location where they differ and adds its unique elements and is therefore considered a new list. At this point the programmer is at a loss without language support for such a feature. There are similarities between the notion of persistance and functional data structures but nothing tangibly usefull. Every change made to a data structure in a functional language returns a new reference to the updated structure and provides no way to acceess the version previously modified. Now consider garbage collection on unreachable references, the removed element of the list.

In a functional language you don't ``change`` data structures, you create new ones. If you create a new data structure from an old one there is no reason why your reference to the old one should be lost unless you choose to lose it. --MarSch (talk) 12:03, 13 February 2008 (UTC)[reply]

Vlists

I have removed the reference to the Vlist data structure. Vlists are not really a "persistent counterpart to the array". They are not persistent at all if you update them as an array. They do allow O(1) random read access if you update them as a list, but that's only if you update them in a partially persistent way. If you update them in a fully persistent way, then the random read access is not efficient.