Jump to content

Kravchuk polynomials: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m +.
External links: category:Orthogonal polynomials
Line 17: Line 17:
*[http://mathworld.wolfram.com/KrawtchoukPolynomial.html "Krawtchouk polynomial"] at [[MathWorld]]
*[http://mathworld.wolfram.com/KrawtchoukPolynomial.html "Krawtchouk polynomial"] at [[MathWorld]]


[[category:Polynomials]]
[[category:Orthogonal polynomials]]

Revision as of 15:35, 4 October 2008

Kravchuk polynomials or Krawtchouk polynomials are classical orthogonal polynomials associated with the binomial distribution, introduced by the Ukrainian mathematician Mikhail Kravchuk in 1929.[1]

The first few polynomials are:

The Kravchuk polynomials are a special case of the Meixner polynomials of the first kind.

References

  1. ^ Sur une généralisation des polynomes d'Hermite. Note de M.Krawtchouk, C.R.Acad. Sci. 1929. T.189, No.17. P.620 - 622.
  • Nikiforov, A. F., Suslov, S. K. and Uvarov, V. B., "Classical Orthogonal Polynomials of a Discrete Variable". Springer-Verlag, Berlin-Heidelberg-New York, 1991.