Jump to content

Human evolution: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
History of paleoanthropology: added PDF format parameter
History of paleoanthropology: fix full-text link
Line 19: Line 19:
Since the time of [[Carolus Linnaeus]], scientists have considered the great apes to be the closest relatives of human beings because they look very similar. In the 19th century, they speculated that the closest living relatives of humans are [[chimpanzee]]s. Based on the natural range of these creatures, they surmised that humans share a [[common ancestor]] with other African great apes and that [[fossil]]s of these ancestors would be found in Africa. It is now accepted by virtually all biologists that humans are not only similar to the great apes but, in fact, are great apes.
Since the time of [[Carolus Linnaeus]], scientists have considered the great apes to be the closest relatives of human beings because they look very similar. In the 19th century, they speculated that the closest living relatives of humans are [[chimpanzee]]s. Based on the natural range of these creatures, they surmised that humans share a [[common ancestor]] with other African great apes and that [[fossil]]s of these ancestors would be found in Africa. It is now accepted by virtually all biologists that humans are not only similar to the great apes but, in fact, are great apes.


It was only in the 1920s that such [[fossil]]s were discovered in Africa. In 1925, [[Raymond Dart]] described ''[[Australopithecus africanus]]''.<ref>{{cite journal |author=Dart RA |title=The Man-Ape of South Africa |journal=Nature |volume=115 |pages=195–199 |year=1925 |doi=10.1038/115195a0 |url=http://www.clas.ufl.edu/users/krigbaum/proseminar/dart_nature_1925.pdf |format=PDF}}</ref> The [[type specimen]] was the [[Taung Child]], an australopithecine infant discovered in a cave. This cave, in [[Taung]], [[South Africa]], was being mined for raw materials used to make concrete. The child's remains were a remarkably well-preserved tiny skull and an [[endocranial cast]] of the individual's brain. Although the brain was small (410 cm³), its shape was rounded, unlike that of chimpanzees and gorillas, and more like a modern human brain. Also, the specimen showed short [[Canine tooth|canine teeth]], and the position of the [[foramen magnum]] was evidence of [[bipedal]] locomotion. All of these traits convinced Dart that the Taung baby was a bipedal human ancestor, a transitional form between apes and humans.
It was only in the 1920s that such [[fossil]]s were discovered in Africa. In 1925, [[Raymond Dart]] described ''[[Australopithecus africanus]]''.<ref>{{cite journal |author=Dart RA |title=The Man-Ape of South Africa |journal=Nature |volume=115 |pages=195–199 |year=1925 |doi=10.1038/115195a0 |url=http://www.nature.com/nature/ancestor/pdf/115195.pdf |format=PDF}}</ref> The [[type specimen]] was the [[Taung Child]], an australopithecine infant discovered in a cave. This cave, in [[Taung]], [[South Africa]], was being mined for raw materials used to make concrete. The child's remains were a remarkably well-preserved tiny skull and an [[endocranial cast]] of the individual's brain. Although the brain was small (410 cm³), its shape was rounded, unlike that of chimpanzees and gorillas, and more like a modern human brain. Also, the specimen showed short [[Canine tooth|canine teeth]], and the position of the [[foramen magnum]] was evidence of [[bipedal]] locomotion. All of these traits convinced Dart that the Taung baby was a bipedal human ancestor, a transitional form between apes and humans.


Another 20 years would pass before Dart's claims were taken seriously, following the discovery of more fossils that resembled his find. The prevailing view of the time was that a large brain evolved before bipedality. It was thought that intelligence on par with modern humans was a prerequisite to bipedalism.
Another 20 years would pass before Dart's claims were taken seriously, following the discovery of more fossils that resembled his find. The prevailing view of the time was that a large brain evolved before bipedality. It was thought that intelligence on par with modern humans was a prerequisite to bipedalism.

Revision as of 14:09, 22 November 2008

Human evolution, or anthropogenesis, is the part of biological evolution concerning the emergence of Homo sapiens as a distinct species from other hominans, great apes and placental mammals. It is the subject of a broad scientific inquiry that seeks to understand and describe how this change occurred. The study of human evolution encompasses many scientific disciplines, most notably physical anthropology, linguistics and genetics.

The term "human", in the context of human evolution, refers to the genus Homo, but studies of human evolution usually include other hominins, such as the australopithecines. The Homo genus diverged from the australopithecines about 2 million years ago in Africa. Several typological species of Homo, now extinct[1], evolved. These include Homo erectus, which inhabited Asia, and Homo neanderthalensis, which inhabited Europe.

Archaic Homo sapiens evolved between 400,000 and 250,000 years ago. The dominant view among scientists is the recent African origin of modern humans (RAO) that H. sapiens evolved in Africa and spread across the globe, replacing populations of H. erectus and H. neanderthalensis. Scientists supporting the alternative hypothesis on the multiregional origin of modern humans (MTO) view modern humans as having evolved as a single, widespread population from existing Homo species, particularly H. erectus. The fossil evidence is insufficient to resolve this vigorous debate.[2]

Starting with H. habilis, humans began using stone tools of increasing sophistication. About 50,000 years ago, human technology and culture began to change more rapidly.

History of paleoanthropology

Paleoanthropology is the study of ancient humans based on fossil evidence, tools, and other signs of human habitation. The modern field of paleoanthropology began with the discovery of a Neanderthal skeleton in 1856, although there had been finds elsewhere since 1830.[3]

By 1859, the morphological similarity of humans to certain great apes had been discussed and argued for some time, but the idea of the biological evolution of species in general was not legitimized until Charles Darwin published On the Origin of Species in November of that year. Darwin's first book on evolution did not address the specific question of human evolution: "Light will be thrown on the origin of man and his history", was all Darwin wrote on the subject. Nevertheless, the implications of evolutionary theory were clear to contemporary readers.[4]

Debates between Thomas Huxley and Richard Owen focused on human evolution. Huxley convincingly illustrated many of the similarities and differences between humans and apes in his 1863 book Evidence as to Man's Place in Nature. By the time Darwin published his own book on the subject, The Descent of Man, it was already a well-known interpretation of his theory, and the interpretation which made the theory highly controversial. Even many of Darwin's original supporters (such as Alfred Russel Wallace and Charles Lyell) did not like the idea that human beings could have evolved their impressive mental capacities and moral sensibilities through natural selection.

Since the time of Carolus Linnaeus, scientists have considered the great apes to be the closest relatives of human beings because they look very similar. In the 19th century, they speculated that the closest living relatives of humans are chimpanzees. Based on the natural range of these creatures, they surmised that humans share a common ancestor with other African great apes and that fossils of these ancestors would be found in Africa. It is now accepted by virtually all biologists that humans are not only similar to the great apes but, in fact, are great apes.

It was only in the 1920s that such fossils were discovered in Africa. In 1925, Raymond Dart described Australopithecus africanus.[5] The type specimen was the Taung Child, an australopithecine infant discovered in a cave. This cave, in Taung, South Africa, was being mined for raw materials used to make concrete. The child's remains were a remarkably well-preserved tiny skull and an endocranial cast of the individual's brain. Although the brain was small (410 cm³), its shape was rounded, unlike that of chimpanzees and gorillas, and more like a modern human brain. Also, the specimen showed short canine teeth, and the position of the foramen magnum was evidence of bipedal locomotion. All of these traits convinced Dart that the Taung baby was a bipedal human ancestor, a transitional form between apes and humans.

Another 20 years would pass before Dart's claims were taken seriously, following the discovery of more fossils that resembled his find. The prevailing view of the time was that a large brain evolved before bipedality. It was thought that intelligence on par with modern humans was a prerequisite to bipedalism.

The australopithecines are now thought to be immediate ancestors of the genus Homo, the group to which modern humans belong.[6] Both australopithecines and Homo sapiens are part of the tribe Hominini, but recent data has brought into doubt the position of A. africanus as a direct ancestor of modern humans; it may well have been a dead-end cousin.[7] The australopithecines were originally classified as either gracile or robust. The robust variety of Australopithecus has since been reclassified as Paranthropus, although it is still regarded as a subgenus of Australopithecus by some authors.[8]

In the 1930s, when the robust specimens were first described, the Paranthropus genus was used. During the 1960s, the robust variety was moved into Australopithecus. The recent trend has been back to the original classification as a separate genus.[9]

Human evolution/Species chart

Before Homo

The evolutionary history of the primates can be traced back for some 85 million years, as one of the oldest of all surviving placental mammal groups. Most paleontologists consider that primates share a common ancestor with the bats,[citation needed] another extremely ancient lineage, and that this ancestor probably lived during the late Cretaceous, together with the last dinosaurs. The oldest known primates come from North America, but they were widespread in Eurasia and Africa as well, during the tropical conditions of the Paleocene and Eocene.

With the beginning of modern climates, marked by the formation of the first Antarctic ice in the early Oligocene around 30 million years ago, primates went extinct everywhere but Africa and southern Asia. One such primate from this time was Notharctus. Fossil evidence found in Germany 20 years ago was determined to be about 16.5 million years old, some 1.5 million years older than similar species from East Africa.[10] It suggests that the primate lineage of the great apes first appeared in Eurasia and not Africa [citation needed].

The discoveries suggest that the early ancestors of the hominids (the family of great apes and humans) migrated to Eurasia from Africa about 17 million years ago, just before these two continents were cut off from each other by an expansion of the Mediterranean Sea. Begun[10] says that these primates flourished in Eurasia and that their lineage leading to the African apes and humans—Dryopithecus—migrated south from Europe or Western Asia into Africa. The surviving tropical population, which is seen most completely in the upper Eocene and lowermost Oligocene fossil beds of the Fayum depression southwest of Cairo, gave rise to all living primates—lemurs of Madagascar, lorises of Southeast Asia, galagos or "bush babies" of Africa, and the anthropoids; platyrrhines or New World monkeys, and catarrhines or Old World monkeys and the great apes and humans.

The earliest known catarrhine is Kamoyapithecus from uppermost Oligocene at Eragaleit in the northern Kenya rift valley, dated to 24 mya (millions of years before present). Its ancestry is generally thought to be close to such genera as Aegyptopithecus, Propliopithecus, and Parapithecus from the Fayum, at around 35 mya. There are no fossils from the intervening 11 million years. No near ancestor to South American platyrrhines, whose fossil record begins at around 30 mya, can be identified among the North African fossil species, and possibly lies in other forms that lived in West Africa that were caught up in the still-mysterious transatlantic sweepstakes that sent primates, rodents, boa constrictors, and cichlid fishes from Africa to South America sometime in the Oligocene.

In the early Miocene, after 22 mya, many kinds of arboreally adapted primitive catarrhines from East Africa suggest a long history of prior diversification. Because the fossils at 20 mya include fragments attributed to Victoriapithecus, the earliest cercopithecoid; the other forms are (by default) grouped as hominoids, without clear evidence as to which are closest to living apes and humans. Among the presently recognized genera in this group, which ranges up to 13 mya, we find Proconsul, Rangwapithecus, Dendropithecus, Limnopithecus, Nacholapithecus, Equatorius, Nyanzapithecus, Afropithecus, Heliopithecus, and Kenyapithecus, all from East Africa. The presence of other generalized non-cercopithecids of middle Miocene age from sites far distant—Otavipithecus from cave deposits in Namibia, and Pierolapithecus and Dryopithecus from France, Spain and Austria—is evidence of a wide diversity of forms across Africa and the Mediterranean basin during the relatively warm and equable climatic regimes of the early and middle Miocene.

The youngest of the Miocene hominoids, Oreopithecus, is from 9 mya coal beds in Italy.

Molecular evidence indicates that the lineage of gibbons (family Hylobatidae) became distinct between 18 and 12 Ma, and that of orangutans (subfamily Ponginae) at about 12 Ma; we have no fossils that clearly document the ancestry of gibbons, which may have originated in a so far unknown South East Asian hominid population, but fossil proto-orangutans may be represented by Ramapithecus from India and Griphopithecus from Turkey, dated to around 10 Ma.

It has been suggested that species close to last common ancestors of gorillas, chimpanzees and humans may be represented by Nakalipithecus fossils found in Kenya and Ouranopithecus found in Greece. Molecular evidence suggests that between 8 and 4 mya, first the gorillas, and then the chimpanzee (genus Pan) split off from the line leading to the humans; human DNA is 98.4 percent identical to the DNA of chimpanzees.[11] The fossil record of gorillas and chimpanzees is quite limited [12]. Both poor preservation (rain forest soils tend to be acidic and dissolve bone) and sampling bias probably contribute to this problem.

Other Hominines, however, likely adapted (along with antelopes, hyenas, dogs, pigs, elephants, and horses) to the somewhat drier environments outside the equatorial belt (which contracted after about 8 million years ago; reference needed) and their fossils are relatively well known. The earliest are Sahelanthropus tchadensis (7 mya) and Orrorin tugenensis (6 mya), followed by:

Genus Homo

The word homo is Latin for "human", chosen originally by Carolus Linnaeus in his classification system. It is often translated as "man"; however, this can lead to confusion, given that the English word "man" can refer specifically to males, and such gender-biased usage is increasingly rejected by modern audiences (see political correctness). The word "human" is from the Latin humanus, the adjectival form of homo. (Latin for "man" in the gender-specific sense is vir, as in "virile".)

In modern taxonomy, Homo sapiens is the only extant species of its genus, Homo. Likewise, the ongoing study of the origins of Homo sapiens often demonstrates that there were other Homo species, all of which are now extinct. While some of these other species might have been ancestors of H. sapiens, many were likely our "cousins", having speciated away from our ancestral line.[13] There is not yet a consensus as to which of these groups should count as separate species and which as subspecies of another species. In some cases this is due to the paucity of fossils, in other cases it is due to the slight differences used to classify species in the Homo genus. The Sahara pump theory provides an explanation of the early variation in the genus Homo.

There have been two main schools of thought about the factors that drove human evolution. The earlier theory, the Savannah Theory, first propounded by Raymond Dart, says that the arboreal existence was replaced by a move to the savannah for hunting animals, even though major adaptations occurred in human ancestors long before the savannahs existed.[14] Several anthropologists, such as Bernard Wood, Kevin Hunt and Philip Tobias, have pronounced the Savannah Theory to be defunct. The other theory, which is still strongly disputed by many researchers, is the aquatic ape hypothesis (AAH). This asserts that wading, swimming and diving for food exerted a strong evolutionary effect on the ancestors of the genus Homo and is in part responsible for the split between the common ancestors of humans and other great apes. The AAH attempts to explain the large number of physical differences between humans and other apes including bipedalism,[15] hairless skin,[16] increased subcutaneous fat,[17] descended larynx,[18]vernix caseosa,[18] greatly expanded brain size,[19] a hooded nose which prevents water from entering the nostrils, and greasy skin with an abundance of sebaceous glands, which can be interpreted as a waterproofing device.[20] There are several variants on the broad theme that early or proto-humans lived in close proximity to water, gathering much of their food in or near shallow bodies of water and developing and adapting new modes of locomotion in order to move and gather food such as wading,[15] swimming,[21] and diving.[17][22][23] Specific fossil evidence for an aquatic ape has been difficult to find, possibly because the covering with sediment is the most common fossilisation process even for non-aquatic species and because changes in sea level has put much of the coastal habitat 100-120 metres below sea level.[24]

Based on archaeological and paleontological evidence, it has been possible to infer the ancient dietary practices of various Homo species and to study the role of diet in human (Homo) physical and behavioral evolution.[25][26][27][28][29]

Homo habilis

H. habilis lived from about 2.4 to 1.4 million years ago (mya). H. habilis, the first species of the genus Homo, evolved in South and East Africa in the late Pliocene or early Pleistocene, 2.5 – 2 mya, when it diverged from the Australopithecines. H. habilis had smaller molars and larger brains than the Australopithecines, and made tools from stone and perhaps animal bones. One of the first known hominids, it was nicknamed 'handy man' by its discoverer, Louis Leakey due to its association with stone tools (mode 1). Some scientists have proposed moving this species out of Homo and into Australopithecus due to its postcranial morphology being more adapted to an arboreal existence rather than to the bipedalism of H. sapiens [30].

Homo rudolfensis and Homo georgicus

These are proposed species names for fossils from about 1.9–1.6 mya, the relation of which with H. habilis is not yet clear.

  • H. rudolfensis refers to a single, incomplete skull from Kenya. Scientists have suggested that this was just another habilis, but this has not been confirmed. [31]
  • H. georgicus, from Georgia, may be an intermediate form between H. habilis and H. erectus,[32] or a sub-species of H. erectus.[33]

Homo ergaster and Homo erectus

One current view of the temporal and geographical distribution of hominid populations. Other interpretations differ mainly in the taxonomy and geographical distribution of hominid species.

The first fossils of Homo erectus were discovered by Dutch physician Eugene Dubois in 1891 on the Indonesian island of Java. He originally gave the material the name Pithecanthropus erectus based on its morphology that he considered to be intermediate between that of humans and apes.[34] H. erectus lived from about 1.8 mya to 70,000 years ago. Often the early phase, from 1.8 to 1.25 mya, is considered to be a separate species, H. ergaster, or it is seen as a subspecies of H. erectus, Homo erectus ergaster.

In the Early Pleistocene, 1.5 – 1 mya, in Africa, Asia, and Europe, presumably, some populations of Homo habilis evolved larger brains and made more elaborate stone tools; these differences and others are sufficient for anthropologists to classify them as a new species, H. erectus. In addition H. erectus was the first human ancestor to walk truly upright.[35] This was made possible by the evolution of locking knees and a different location of the foramen magnum (the hole in the skull where the spine enters). They may have used fire to cook their meat.

A famous example of Homo erectus is Peking Man; others were found in Asia (notably in Indonesia), Africa, and Europe. Many paleoanthropologists are now using the term Homo ergaster for the non-Asian forms of this group, and reserving H. erectus only for those fossils found in the Asian region and meeting certain skeletal and dental requirements which differ slightly from H. ergaster. However, this article does not follow that usage.

Homo cepranensis and Homo antecessor

These are proposed as species that may be intermediate between H. erectus and H. heidelbergensis.[citation needed]

  • H. antecessor is known from fossils from Spain and England that are 1.2 mya–500,000 years old.[36] [37]
  • H. cepranensis refers to a single skull cap from Italy, estimated to be about 800,000 years old.[38]

Homo heidelbergensis

H. heidelbergensis (Heidelberg Man) lived from about 800,000 to about 300,000 years ago. Also proposed as Homo sapiens heidelbergensis or Homo sapiens paleohungaricus.[39]

Homo rhodesiensis, and the Gawis cranium

  • H. rhodesiensis, estimated to be 300,000–125,000 years old. Most current experts believe Rhodesian Man to be within the group of Homo heidelbergensis though other designations such as Archaic Homo sapiens and Homo sapiens rhodesiensis have also been proposed.
  • In February 2006 a fossil, the Gawis cranium, was found which might possibly be a species intermediate between H. erectus and H. sapiens or one of many evolutionary dead ends. The skull from Gawis, Ethiopia, is believed to be 500,000–250,000 years old. Only summary details are known, and no peer reviewed studies have been released by the finding team. Gawis man's facial features suggest its being either an intermediate species or an example of a "Bodo man" female.[40]

Homo neanderthalensis

H. neanderthalensis lived from about 250,000 to as recent as 30,000 years ago. Also proposed as Homo sapiens neanderthalensis: there is ongoing debate over whether the 'Neanderthal Man' was a separate species, Homo neanderthalensis, or a subspecies of H. sapiens[41] While the debate remains unsettled, evidence from sequencing mitochondrial DNA indicates that no significant gene flow occurred between H. neanderthalensis and H. sapiens, and, therefore, the two were separate species that shared a common ancestor about 660,000 years ago.[42][43] In 1997, Dr. Mark Stoneking, then an associate professor of anthropology at Pennsylvania State University, stated: "These results [based on mitochondrial DNA extracted from Neanderthal bone] indicate that Neanderthals did not contribute mitochondrial DNA to modern humans… Neanderthals are not our ancestors." Subsequent investigation of a second source of Neanderthal DNA supported these findings.[44] However, supporters of the multiregional hypothesis point to recent studies indicating non-African nuclear DNA heritage dating to one mya,[45] although the reliability of these studies has been questioned.[46]

Homo sapiens

H. sapiens ("sapiens" means wise or intelligent) has lived from about 250,000 years ago to the present. Between 400,000 years ago and the second interglacial period in the Middle Pleistocene, around 250,000 years ago, the trend in cranial expansion and the elaboration of stone tool technologies developed, providing evidence for a transition from H. erectus to H. sapiens. The direct evidence suggests there was a migration of H. erectus out of Africa, then a further speciation of H. sapiens from H. erectus in Africa (there is little evidence that this speciation occurred elsewhere). Then a subsequent migration within and out of Africa eventually replaced the earlier dispersed H. erectus. This migration and origin theory is usually referred to as the single-origin theory. However, the current evidence does not preclude multiregional speciation, either. This is a hotly debated area in paleoanthropology.

Current research has established that human beings are genetically highly homogenous; that is, the DNA of individuals is more alike than usual for most species, which may have resulted from their relatively recent evolution or the Toba catastrophe. Distinctive genetic characteristics have arisen, however, primarily as the result of small groups of people moving into new environmental circumstances. These adapted traits are a very small component of the Homo sapiens genome, but include various characteristics such as skin color and nose form, in addition to internal characteristics such as the ability to breathe more efficiently in high altitudes.

H. sapiens idaltu, from Ethiopia, lived from about 160,000 years ago (proposed subspecies). It is the oldest known anatomically modern human.

Homo floresiensis

H. floresiensis, which lived about 100,000–12,000 years ago has been nicknamed hobbit for its small size, possibly a result of insular dwarfism.[47] H. floresiensis is intriguing both for its size and its age, being a concrete example of a recent species of the genus Homo that exhibits derived traits not shared with modern humans. In other words, H. floresiensis share a common ancestor with modern humans, but split from the modern human lineage and followed a distinct evolutionary path. The main find was a skeleton believed to be a woman of about 30 years of age. Found in 2003 it has been dated to approximately 18,000 years old. The living woman was estimated to be one meter in height, with a brain volume of just 380 cm3 (considered small for a chimpanzee and less than a third of the H. sapiens average of 1400 cm3).

However, there is an ongoing debate over whether H. floresiensis is indeed a separate species.[48] Some scientists presently believe that H. floresiensis was a modern H. sapiens suffering from pathological dwarfism.[49] This hypothesis is supported in part, because the modern humans who live on Flores, the island where the skeleton was found, are pygmies. This coupled with pathological dwarfism could indeed create a hobbit-like human. The other major attack on H. floresiensis is that it was found with tools only associated with H. sapiens.[49]

Comparative table of Homo species

Comparative table of Homo lineages
Lineages Temporal range
(kya)
Habitat Adult height Adult mass Cranial capacity
(cm3)
Fossil record Discovery Publication
of name
H. habilis
membership in Homo uncertain
2,100–1,500[a][b] Tanzania 110–140 cm (3 ft 7 in – 4 ft 7 in) 33–55 kg (73–121 lb) 510–660 Many 1960 1964
H. rudolfensis
membership in Homo uncertain
1,900 Kenya 700 2 sites 1972 1986
H. gautengensis
also classified as H. habilis
1,900–600 South Africa 100 cm (3 ft 3 in) 3 individuals[52][c] 2010 2010
H. erectus 1,900–140[53][d][54][e] Africa, Eurasia 180 cm (5 ft 11 in) 60 kg (130 lb) 850 (early) – 1,100 (late) Many[f][g] 1891 1892
H. ergaster
African H. erectus
1,800–1,300[56] East and Southern Africa 700–850 Many 1949 1975
H. antecessor 1,200–800 Western Europe 175 cm (5 ft 9 in) 90 kg (200 lb) 1,000 2 sites 1994 1997
H. heidelbergensis
early H. neanderthalensis
600–300[h] Europe, Africa 180 cm (5 ft 11 in) 90 kg (200 lb) 1,100–1,400 Many 1907 1908
H. cepranensis
a single fossil, possibly H. heidelbergensis
c. 450[57] Italy 1,000 1 skull cap 1994 2003
H. longi 309–138[58] Northeast China 1,420[59] 1 individual 1933 2021
H. rhodesiensis
early H. sapiens
c. 300 Zambia 1,300 Single or very few 1921 1921
H. naledi c. 300[60] South Africa 150 cm (4 ft 11 in) 45 kg (99 lb) 450 15 individuals 2013 2015
H. sapiens
(anatomically modern humans)
c. 300–present[i] Worldwide 150–190 cm (4 ft 11 in – 6 ft 3 in) 50–100 kg (110–220 lb) 950–1,800 (extant) —— 1758
H. neanderthalensis
240–40[63][j] Europe, Western Asia 170 cm (5 ft 7 in) 55–70 kg (121–154 lb)
(heavily built)
1,200–1,900 Many 1829 1864
H. floresiensis
classification uncertain
190–50 Indonesia 100 cm (3 ft 3 in) 25 kg (55 lb) 400 7 individuals 2003 2004
Nesher Ramla Homo
classification uncertain
140–120 Israel several individuals 2021
H. tsaichangensis
possibly H. erectus or Denisova
c. 100[k] Taiwan 1 individual 2008(?) 2015
H. luzonensis
c. 67[66][67] Philippines 3 individuals 2007 2019
Denisova hominin 40 Siberia 2 sites 2000
2010[l]

Use of tools

Using tools has been interpreted as a sign of intelligence, and it has been theorized that tool use may have stimulated certain aspects of human evolution—most notably the continued expansion of the human brain. Paleontology has yet to explain the expansion of this organ over millions of years despite being extremely demanding in terms of energy consumption. The brain of a modern human consumes about 20 Watts (400 kilocalories per day), which is one fifth of the energy consumption of a human body. Increased tool use would allow for hunting and consuming meat, which is more energy-rich than plants. Researchers have suggested that early hominids were thus under evolutionary pressure to increase their capacity to create and use tools.[68]

Precisely when early humans started to use tools is difficult to determine, because the more primitive these tools are (for example, sharp-edged stones) the more difficult it is to decide whether they are natural objects or human artifacts. There is some evidence that the australopithecines (4 mya) may have used broken bones as tools, but this is debated.

Stone tools

Stone tools are first attested around 2.6 million years ago, when H. habilis in Eastern Africa used so-called pebble tools, choppers made out of round pebbles that had been split by simple strikes.[69] This marks the beginning of the Paleolithic, or Old Stone Age; its end is taken to be the end of the last Ice Age, around 10,000 years ago. The Paleolithic is subdivided into the Lower Paleolithic (Early Stone Age, ending around 350,000–300,000 years ago), the Middle Paleolithic (Middle Stone Age, until 50,000–30,000 years ago), and the Upper Paleolithic.

The period from 700,000–300,000 years ago is also known as the Acheulean, when H. ergaster (or erectus) made large stone hand-axes out of flint and quartzite, at first quite rough (Early Acheulian), later "retouched" by additional, more subtle strikes at the sides of the flakes. After 350,000 BP (Before Present) the more refined so-called Levallois technique was developed. It consisted of a series of consecutive strikes, by which scrapers, slicers ("racloirs"), needles, and flattened needles were made.[69] Finally, after about 50,000 BP, ever more refined and specialized flint tools were made by the Neanderthals and the immigrant Cro-Magnons (knives, blades, skimmers). In this period they also started to make tools out of bone.

Modern humans and the "Great Leap Forward" debate

Until about 50,000–40,000 years ago the use of stone tools seems to have progressed stepwise. Each phase (habilis, ergaster, neanderthal) started at a higher level than the previous one; but once that phase started, further development was slow. In other words, these particular Homo species were culturally conservative. After 50,000 BP, however, human culture apparently started to change at a much greater speed. Jared Diamond, author of The Third Chimpanzee, and other anthropologists characterize this as a "Great Leap Forward." Modern humans started burying their dead carefully, making clothing out of hides, developing sophisticated hunting techniques (such as using trapping pits or driving animals off cliffs), and engaging in cave painting.[70] This speed-up of cultural change seems connected with the arrival of behaviorally modern humans, Homo sapiens. As human culture advanced, different populations of humans introduced novelty to existing technologies: artifacts such as fish hooks, buttons and bone needles show signs of variation among different populations of humans, something that had not been seen in human cultures prior to 50,000 BP. Typically, neanderthalensis populations are found with technology similar to other contemporary neanderthalensis populations.

Theoretically, modern human behavior is taken to include four ingredient capabilities: abstract thinking (concepts free from specific examples), planning (taking steps to achieve a further goal), innovation (finding new solutions), and symbolic behaviour (such as images and rituals). Among concrete examples of modern human behaviour, anthropologists include specialization of tools, use of jewelry and images (such as cave drawings), organization of living space, rituals (for example, burials with grave gifts), specialized hunting techniques, exploration of less hospitable geographical areas, and barter trade networks. Nevertheless, debate continues as to whether a "revolution" led to modern humans ("the big bang of human consciousness"), or whether the evolution was more gradual .[71]

Models of human evolution

Today, all humans are classified as belonging to the species Homo sapiens sapiens. However, this is not the first species of hominids: the first species of genus Homo, Homo habilis, evolved in East Africa at least 2 million years ago, and members of this species populated different parts of Africa in a relatively short time. Homo erectus evolved more than 1.8 million years ago, and by 1.5 million years ago had spread throughout the Old World. Virtually all physical anthropologists agree that Homo sapiens evolved out of Homo erectus. Anthropologists have been divided as to whether Homo sapiens evolved as one interconnected species from H. erectus (called the Multiregional Model, or the Regional Continuity Model), or evolved only in East Africa, and then migrated out of Africa and replaced H. erectus populations throughout the Old World (called the Out of Africa Model or the Complete Replacement Model). Anthropologists continue to debate both possibilities, but most anthropologists currently favor the Out of Africa model.

Multiregional model

Advocates of the Multiregional model, primarily Milford Wolpoff and his associates, have argued that the simultaneous evolution of H. sapiens in different parts of Europe and Asia would have been possible if there was a degree of gene flow between archaic populations.[72] Similarities of morphological features between archaic European and Chinese populations and modern H. sapiens from the same regions, Wolpoff argues, support a regional continuity only possible within the Multiregional model.[73] Wolpoff and others further argue that this model is consistent with clinal patterns of phenotypic variation (Wolpoff 1993).

Out of Africa model

According to the Out of Africa Model, developed by Chris Stringer and Peter Andrews, modern H. sapiens evolved in Africa 200,000 years ago. Homo sapiens began migrating from Africa between 70,000 – 50,000 years ago and would eventually replace existing hominid species in Europe and Asia.[74][75] The Out of Africa Model has gained support by recent research using mitochondrial DNA (mtDNA). After analysing genealogy trees constructed using 133 types of mtDNA, they concluded that all were descended from a woman from Africa, dubbed Mitochondrial Eve.[76]

There are differing theories on whether there was a single exodus, or several (a Multiple Dispersal Model). A Multiple Dispersal Model involves the Southern Dispersal theory,[77] which has gained support in recent years from genetic, linguistic and archaeological evidence. In this theory, there was a coastal dispersal of modern humans from the Horn of Africa around 70,000 years ago. This group helped to populate Southeast Asia and Oceania, explaining the discovery of early human sites in these areas much earlier than those in the Levant. A second wave of humans dispersed across the Sinai peninsula into Asia, resulting in the bulk of human population for Eurasia. This second group possessed a more sophisticated tool technology and was less dependent on coastal food sources than the original group. Much of the evidence for the first group's expansion would have been destroyed by the rising sea levels at the end of the Holocene era.[77]. The multiple dispersals models is contradicted by studies indicating that the populations of Eurasia and the populations of Southeast Asia and Oceania are all descended from the same mitochondrial DNA lineages. The study further indicates that there was most likely only one single migration out of Africa that gave rise to all Non-African populations.[78]

Comparison of the two models

The two models differ widely. Richard Leakey summarizes the most obvious differences as follows:

The multiregional evolution model describes an evolutionary trend throughout the Old World toward modern Homo sapiens, with little population migration and no population replacement, whereas the 'Out of Africa' model calls for the evolution of Homo sapiens in one location only, followed by extensive population migration across the Old World, resulting in the replacement of existing premodern populations.[2]

The Multiregional model suggests that the fossil record should show the same regional differences in anatomical characteristics that are currently visible today. Racial differences would be deep-rooted, going back as much as two million years. In the Out of Africa model, however, the fossil record would not be expected to show continuity of anatomical characteristics over time; on the contrary, the regional characteristics of older fossils would likely be replaced globally by more modern African ones. Racial differences would be shallow-rooted, having evolved over a relatively short period of time.[2]

Implications for the concept of race

In a 1995 article, Leonard Lieberman and Fatimah Jackson point out that the concepts of cline, population, and ethnicity, as well as humanitarian and political concerns, have led many scientists away from the notion of race; nevertheless, a recent survey showed that physical anthropologists were evenly divided as to whether race is a valid biological concept. They note that among physical anthropologists the vast majority of opposition to the race concept comes from population geneticists, so any new support for a biological concept of race would likely come from another source, namely, the study of human evolution. They therefore ask what, if any, implications the current models of human evolution may have for any biological conception of race.[79]

The major implication for race in the multiregional evolution continuity model involves the time depth of a million or more years in which race differentiation might evolve in diverse ecological regions [...]. This must be balanced against the degree of gene flow and the transregional operation of natural selection on encephalization due to development of tools and, more broadly, culture.[79]

Lieberman and Jackson identified these implications of the Out of Africa model on the race concept:

The shallow time dimension minimizes the degree to which racial differences could have evolved [...]. [T]he mitochondrial DNA model presents a view ... minimizing race differences and avoiding racist implications. However, the model, as interpreted by Wainscoat et al. (1989:34), does describe "a major division of human populations into an African and a Eurasian group." This conclusion could best be used to emphasize the degree of biological differences, and thereby provide support for the race concept.[79]

Lieberman and Jackson argued that while advocates of both the Multiregional model and the Out of Africa model use the word race and make racial assumptions, none define the term. They conclude, "Each model has implications that both magnify and minimize the differences between races. Yet each model seems to take race and races as a conceptual reality. The net result is that those anthropologists who prefer to view races as a reality are encouraged to do so." However, Lieberman and Jackson conclude that students of human evolution would be better off avoiding the word race, instead describing genetic differences in terms of populations and clinal gradations.[79]

Notable human evolution researchers

  • Robert Broom, a Scottish physician and palaeontologist whose work on South Africa led to the discovery and description of "Mrs. Ples"
  • James Burnett, Lord Monboddo, a British judge most famous today as a founder of modern comparative historical linguistics
  • Raymond Dart, an Australian anatomist and palaeoanthropologist, whose work at Taung, in South Africa, led to the discovery of Australopithecus africanus
  • Charles Darwin, a British naturalist who documented considerable evidence that species originate through evolutionary change
  • Richard Dawkins, a British ethologist, evolutionary biologist who has promoted a gene-centered view of evolution
  • J. B. S. Haldane, a British geneticist and evolutionary biologist
  • William D. Hamilton, a British Evolutionary Biologist who expounded a rigorous genetic basis for kin selection, and on the evolution of HIV and other human diseases.
  • Sir Alister Hardy, a British zoologist, who first hypothesised the aquatic ape theory of human evolution
  • Henry McHenry, an American anthropologist who specializes in studies of human evolution, the origins of bipedality, and paleoanthropology
  • Louis Leakey, an African archaeologist and naturalist whose work was important in establishing human evolutionary development in Africa
  • Mary Leakey, a British archaeologist and anthropologist whose discoveries in Africa include the Laetoli footprints
  • Richard Leakey, an African paleontologist and archaeologist, son of Louis and Mary Leakey
  • Svante Pääbo, a Swedish biologist specializing in evolutionary genetics
  • Jeffrey H. Schwartz, an American physical anthropologist and professor of biological anthropology
  • Chris Stringer, anthropologist, leading proponent of the recent single origin hypothesis
  • Alan Templeton, geneticist and statistician, proponent of the multiregional hypothesis
  • Philip V. Tobias, a South African palaeoanthropologist is one of the world's leading authorities on the evolution of humankind
  • Erik Trinkaus, a prominent American paleoanthropologist and expert on Neanderthal biology and human evolution
  • Milford H. Wolpoff, an American paleoanthropologist who is the leading proponent of the multiregional evolution hypothesis.

Species list

This list is in chronological order by genus.

Additional notes

References

  1. ^ Mark Collard, Bernard Wood; How reliable are human phylogenetic hypotheses? quote: .. existing phylogenetic hypotheses about human evolution are unlikely to be reliable http://www.pnas.org/content/97/9/5003.abstract
  2. ^ a b c Leakey, Richard (1994). The Origin of Humankind. Science Masters Series. New York, NY: Basic Books. pp. pages 87-89. ISBN 0465053130. {{cite book}}: |pages= has extra text (help)
  3. ^ "Human Ancestors Hall: Homo neanderthalensis". Retrieved 2008-05-26.
  4. ^ Darwin, Charles (1861). On the Origin of Species (3rd ed.). London: John Murray. p. 488.
  5. ^ Dart RA (1925). "The Man-Ape of South Africa" (PDF). Nature. 115: 195–199. doi:10.1038/115195a0.
  6. ^ Wood B (1996). "Human evolution". Bioessays. 18 (12): 945–54. doi:10.1002/bies.950181204. PMID 8976151.
  7. ^ Wood B (1992). "Origin and evolution of the genus Homo". Nature. 355 (6363): 783–90. doi:10.1038/355783a0. PMID 1538759.
  8. ^ Cela-Conde CJ, Ayala FJ (2003). "Genera of the human lineage". Proc. Natl. Acad. Sci. U.S.A. 100 (13): 7684–9. doi:10.1073/pnas.0832372100. PMID 12794185.
  9. ^ HALDANE JB (1955). "Origin of man". Nature. 176 (4473): 169–70. PMID 13244650. {{cite journal}}: Unknown parameter |month= ignored (help)
  10. ^ a b Kordos L, Begun DR (2001). "Primates from Rudabánya: allocation of specimens to individuals, sex and age categories". J. Hum. Evol. 40 (1): 17–39. doi:10.1006/jhev.2000.0437. PMID 11139358.
  11. ^ Chimps are human, gene study implies – 19 May 2003 – New Scientist
  12. ^ McBrearty S. Jablonsky N.G. de Lumley M. (2005). "First Fossil Chimpanzee". Nature. 437: 105–108. doi:10.1038/nature04008.
  13. ^ Strait DS, Grine FE, Moniz MA (1997). "A reappraisal of early hominid phylogeny". J. Hum. Evol. 32 (1): 17–82. doi:10.1006/jhev.1996.0097. PMID 9034954.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. ^ Richard Leakey, Roger Lewin (1992). Origins Reconsidered. Little, Brown & Co. ISBN 0 349 10345 3.
  15. ^ a b Niemitz, C (2002). "A Theory on the Evolution of the Habitual Orthograde Human Bipedalism - The "Amphibisce Generalistheorie"". Anthropologischer Anzeiger. 60: 3–66.
  16. ^ Morgan, Elaine (1982). The Aquatic Ape. Stein & Day Pub. ISBN 0-285-62509-8.
  17. ^ a b Hardy, A. (1960). "Was man more aquatic in the past". New Scientist. 7: 642–645.
  18. ^ a b Morgan, Elaine (1997). The Aquatic Ape Hypothesis. Souvenir Press. ISBN 0-285-63518-2.
  19. ^ Crawford, M; et al. (2000). "Evidence for the unique function of docosahexanoic acid (DHA) during the evolution of the modern hominid brain". Lipids. 34: S39 – S47. {{cite journal}}: Explicit use of et al. in: |author= (help)
  20. ^ Kingdon, Jonathan. (2003) Lowly Origin Princeton University Press, 242
  21. ^ Patrick, John (1991). Human Respiratory Adaptations for Swimming and Diving. Souvenir Press. 0-285-63033 4. {{cite book}}: Cite has empty unknown parameter: |month= (help)
  22. ^ Scars of Evolution- Presented by Sir David Attenborough, a two part BBC radio 4 series examining the 'aquatic ape hypothesis'
  23. ^ Morris, Desmond (1983). The Naked Ape (April 1999 edition ed.). pp. page 44. ISBN 0385334303. {{cite book}}: |edition= has extra text (help); |pages= has extra text (help)
  24. ^ Verhaegen M & Munro S (2002). "The continental shelf hypothesis". Nutrition & Health. 16: 25–28.
  25. ^ Ungar, Peter S. (2006). Evolution of the Human Diet: The Known, the Unknown, and the Unknowable. US: Oxford University Press. p. 432. ISBN 0195183460.
  26. ^ Ungar, Peter S. & Teaford, Mark F. (2002). Human Diet: Its Origin and Evolution. Westport, CT: Bergin & Garvey. p. 206. ISBN 0897897366.{{cite book}}: CS1 maint: multiple names: authors list (link)
  27. ^ Bogin, Barry (1997). "The evolution of human nutrition". In Romanucci-Ross, Lola; Moerman, Daniel E.; & Tancredi, Laurence R. (ed.). The Anthropology of Medicine: From Culture to Method (3 ed.). South Hadley, Mass.: Bergen and Garvey. pp. 96–142. ISBN 0897895169. {{cite book}}: External link in |chapterurl= (help); Unknown parameter |chapterurl= ignored (|chapter-url= suggested) (help)CS1 maint: multiple names: editors list (link)
  28. ^ Barnicot NA (2005, April/June). "Human nutrition: evolutionary perspectives". Integr Physiol Behav Sci. 40 (2): 114–17. doi:10.1007/BF02734246. PMID 17393680. {{cite journal}}: Check date values in: |year= (help)CS1 maint: year (link)
  29. ^ Leonard WR, Snodgrass JJ, Robertson ML (2007). "Effects of brain evolution on human nutrition and metabolism" (PDF). Annu Rev Nutr. 27: 311–27. doi:10.1146/annurev.nutr.27.061406.093659. PMID 17439362.{{cite journal}}: CS1 maint: multiple names: authors list (link)[dead link]
  30. ^ Wood, B. & Collard, M. (1999) The changing face of Genus Homo. Evol. Anth. 8(6) 195-207
  31. ^ Wood B (1999). "'Homo rudolfensis' Alexeev, 1986-fact or phantom?". J. Hum. Evol. 36 (1): 115–8. doi:10.1006/jhev.1998.0246. PMID 9924136.
  32. ^ Gabounia L. de Lumley M. Vekua A. Lordkipanidze D. de Lumley H. (2002). "Discovery of a new hominid at Dmanisi (Transcaucasia, Georgia)". Comptes Rendus Palevol,. 1 (4): 243–53. doi:10.1016/S1631-0683(02)00032-5.{{cite journal}}: CS1 maint: extra punctuation (link)
  33. ^ Lordkipanidze D, Vekua A, Ferring R; et al. (2006). "A fourth hominin skull from Dmanisi, Georgia". The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology. 288 (11): 1146–57. doi:10.1002/ar.a.20379. PMID 17031841. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  34. ^ Turner W (1895). "On M. Dubois' Description of Remains recently found in Java, named by him Pithecanthropus erectus: With Remarks on so-called Transitional Forms between Apes and Man". Journal of anatomy and physiology. 29 (Pt 3): 424–45. PMID 17232143.
  35. ^ Spoor F, Wood B, Zonneveld F (1994). "Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion". Nature. 369 (6482): 645–8. doi:10.1038/369645a0. PMID 8208290.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  36. ^ Bermúdez de Castro JM, Arsuaga JL, Carbonell E, Rosas A, Martínez I, Mosquera M (1997). "A hominid from the lower Pleistocene of Atapuerca, Spain: possible ancestor to Neandertals and modern humans". Science. 276 (5317): 1392–5. PMID 9162001.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  37. ^ Carbonell, Eudald (2008-03-27). "The first hominin of Europe". Nature. 452: 465–469. doi:10.1038/nature06815. Retrieved 2008-03-26. {{cite journal}}: Check date values in: |date= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  38. ^ Manzi G, Mallegni F, Ascenzi A (2001). "A cranium for the earliest Europeans: phylogenetic position of the hominid from Ceprano, Italy". Proc. Natl. Acad. Sci. U.S.A. 98 (17): 10011–6. doi:10.1073/pnas.151259998. PMID 11504953.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  39. ^ Czarnetzki A, Jakob T, Pusch CM (2003). "Palaeopathological and variant conditions of the Homo heidelbergensis type specimen (Mauer, Germany)". J. Hum. Evol. 44 (4): 479–95. PMID 12727464.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. ^ "Scientists discover hominid cranium in Ethiopia" (Press release). Indiana University. March 27, 2006. Retrieved 2006-11-26. {{cite press release}}: Cite has empty unknown parameter: |1= (help)
  41. ^ Harvati K (2003). "The Neanderthal taxonomic position: models of intra- and inter-specific craniofacial variation". J. Hum. Evol. 44 (1): 107–32. doi:10.1016/S0047-2484(02)00208-7. PMID 12604307.
  42. ^ Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Pääbo S (1997). "Neandertal DNA sequences and the origin of modern humans". Cell. 90 (1): 19–30. doi:10.1016/S0092-8674(00)80310-4. PMID 9230299.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  43. ^ Green RE; et al. (2008). "A Complete Neandertal Mitochondrial Genome Sequence Determined by High-Throughput Sequencing". Cell. 134 (3): 416–426. {{cite journal}}: Explicit use of et al. in: |author= (help)
  44. ^ Serre D, Langaney A, Chech M; et al. (2004). "No evidence of Neandertal mtDNA contribution to early modern humans". PLoS Biol. 2 (3): E57. doi:10.1371/journal.pbio.0020057. PMID 15024415. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  45. ^ Gutiérrez G, Sánchez D, Marín A (2002). "A reanalysis of the ancient mitochondrial DNA sequences recovered from Neandertal bones". Mol. Biol. Evol. 19 (8): 1359–66. PMID 12140248.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  46. ^ Hebsgaard MB, Wiuf C, Gilbert MT, Glenner H, Willerslev E (2007). "Evaluating Neanderthal genetics and phylogeny". J. Mol. Evol. 64 (1): 50–60. doi:10.1007/s00239-006-0017-y. PMID 17146600.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  47. ^ Brown P, Sutikna T, Morwood MJ; et al. (2004). "A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia". Nature. 431 (7012): 1055–61. doi:10.1038/nature02999. PMID 15514638. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  48. ^ Argue D, Donlon D, Groves C, Wright R (2006). "Homo floresiensis: microcephalic, pygmoid, Australopithecus, or Homo?". J. Hum. Evol. 51 (4): 360–74. doi:10.1016/j.jhevol.2006.04.013. PMID 16919706.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  49. ^ a b Martin RD, Maclarnon AM, Phillips JL, Dobyns WB (2006). "Flores hominid: new species or microcephalic dwarf?". The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology. 288 (11): 1123–45. doi:10.1002/ar.a.20389. PMID 17031806.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  50. ^ Schrenk F, Kullmer O, Bromage T (2007). "The Earliest Putative Homo Fossils". In Henke W, Tattersall I (eds.). Handbook of Paleoanthropology. Vol. 1. In collaboration with Thorolf Hardt. Berlin, Heidelberg: Springer. pp. 1611–1631. doi:10.1007/978-3-540-33761-4_52. ISBN 978-3-540-32474-4.
  51. ^ DiMaggio EN, Campisano CJ, Rowan J, Dupont-Nivet G, Deino AL, Bibi F, et al. (March 2015). "Paleoanthropology. Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia". Science. 347 (6228): 1355–9. Bibcode:2015Sci...347.1355D. doi:10.1126/science.aaa1415. PMID 25739409. S2CID 43455561.
  52. ^ Curnoe D (June 2010). "A review of early Homo in southern Africa focusing on cranial, mandibular and dental remains, with the description of a new species (Homo gautengensis sp. nov.)". Homo. 61 (3): 151–77. doi:10.1016/j.jchb.2010.04.002. PMID 20466364.
  53. ^ Haviland WA, Walrath D, Prins HE, McBride B (2007). Evolution and Prehistory: The Human Challenge (8th ed.). Belmont, CA: Thomson Wadsworth. p. 162. ISBN 978-0-495-38190-7.
  54. ^ Ferring R, Oms O, Agustí J, Berna F, Nioradze M, Shelia T, et al. (June 2011). "Earliest human occupations at Dmanisi (Georgian Caucasus) dated to 1.85-1.78 Ma". Proceedings of the National Academy of Sciences of the United States of America. 108 (26): 10432–6. Bibcode:2011PNAS..10810432F. doi:10.1073/pnas.1106638108. PMC 3127884. PMID 21646521.
  55. ^ Indriati E, Swisher CC, Lepre C, Quinn RL, Suriyanto RA, Hascaryo AT, et al. (2011). "The age of the 20 meter Solo River terrace, Java, Indonesia and the survival of Homo erectus in Asia". PLOS ONE. 6 (6): e21562. Bibcode:2011PLoSO...621562I. doi:10.1371/journal.pone.0021562. PMC 3126814. PMID 21738710.
  56. ^ Hazarika M (2007). "Homo erectus/ergaster and Out of Africa: Recent Developments in Paleoanthropology and Prehistoric Archaeology" (PDF). EAA Summer School eBook. Vol. 1. European Anthropological Association. pp. 35–41. Intensive Course in Biological Anthrpology, 1st Summer School of the European Anthropological Association, 16–30 June, 2007, Prague, Czech Republic
  57. ^ Muttoni G, Scardia G, Kent DV, Swisher CC, Manzi G (2009). "Pleistocene magnetochronology of early hominin sites at Ceprano and Fontana Ranuccio, Italy". Earth and Planetary Science Letters. 286 (1–2): 255–268. Bibcode:2009E&PSL.286..255M. doi:10.1016/j.epsl.2009.06.032.
  58. ^ Ji Q, Wu W, Ji Y, Li Q, Ni X (25 June 2021). "Late Middle Pleistocene Harbin cranium represents a new Homo species". The Innovation. 2 (3): 100132. doi:10.1016/j.xinn.2021.100132. PMC 8454552. PMID 34557772.
  59. ^ Ni X, Ji Q, Wu W, Shao Q, Ji Y, Zhang C, Liang L, Ge J, Guo Z, Li J, Li Q, Grün R, Stringer C (25 June 2021). "Massive cranium from Harbin in northeastern China establishes a new Middle Pleistocene human lineage". The Innovation. 2 (3): 100130. doi:10.1016/j.xinn.2021.100130. PMC 8454562. PMID 34557770.
  60. ^ Dirks PH, Roberts EM, Hilbert-Wolf H, Kramers JD, Hawks J, Dosseto A, et al. (May 2017). "Homo naledi and associated sediments in the Rising Star Cave, South Africa". eLife. 6: e24231. doi:10.7554/eLife.24231. PMC 5423772. PMID 28483040.
  61. ^ Callaway, Ewan (7 June 2017). "Oldest Homo sapiens fossil claim rewrites our species' history". Nature. doi:10.1038/nature.2017.22114. Retrieved 11 June 2017.
  62. ^ Posth C, Wißing C, Kitagawa K, Pagani L, van Holstein L, Racimo F, et al. (July 2017). "Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals". Nature Communications. 8: 16046. Bibcode:2017NatCo...816046P. doi:10.1038/ncomms16046. PMC 5500885. PMID 28675384.
  63. ^ Bischoff JL, Shamp DD, Aramburu A, et al. (March 2003). "The Sima de los Huesos Hominids Date to Beyond U/Th Equilibrium (>350 kyr) and Perhaps to 400–500 kyr: New Radiometric Dates". Journal of Archaeological Science. 30 (3): 275–280. doi:10.1006/jasc.2002.0834. ISSN 0305-4403.
  64. ^ Dean D, Hublin JJ, Holloway R, Ziegler R (May 1998). "On the phylogenetic position of the pre-Neandertal specimen from Reilingen, Germany". Journal of Human Evolution. 34 (5): 485–508. doi:10.1006/jhev.1998.0214. PMID 9614635.
  65. ^ Chang CH, Kaifu Y, Takai M, Kono RT, Grün R, Matsu'ura S, et al. (January 2015). "The first archaic Homo from Taiwan". Nature Communications. 6: 6037. Bibcode:2015NatCo...6.6037C. doi:10.1038/ncomms7037. PMC 4316746. PMID 25625212.
  66. ^ Détroit F, Mijares AS, Corny J, Daver G, Zanolli C, Dizon E, et al. (April 2019). "A new species of Homo from the Late Pleistocene of the Philippines" (PDF). Nature. 568 (7751): 181–186. Bibcode:2019Natur.568..181D. doi:10.1038/s41586-019-1067-9. PMID 30971845. S2CID 106411053.
  67. ^ Zimmer C (10 April 2019). "A new human species once lived in this Philippine cave – Archaeologists in Luzon Island have turned up the bones of a distantly related species, Homo luzonensis, further expanding the human family tree". The New York Times. Retrieved 10 April 2019.
  68. ^ Gibbons, Ann (1998). "Solving the Brain's Energy Crisis". Science. 280 (5368): 1345–47. doi:10.1126/science.280.5368.1345. PMID 9634409.
  69. ^ a b Plummer T (2004). "Flaked stones and old bones: Biological and cultural evolution at the dawn of technology". Am. J. Phys. Anthropol. Suppl 39: 118–64. doi:10.1002/ajpa.20157. PMID 15605391.
  70. ^ Ambrose SH (2001). "Paleolithic technology and human evolution". Science. 291 (5509): 1748–53. PMID 11249821.
  71. ^ Mcbrearty S, Brooks AS (2000). "The revolution that wasn't: a new interpretation of the origin of modern human behavior". J. Hum. Evol. 39 (5): 453–563. doi:10.1006/jhev.2000.0435. PMID 11102266.
  72. ^ Thorne, Alan, and Milford Wolpoff (1992) "The Multiregional Evolution of humans" in Scientific American, April 76-93; Smith, Fred and Frank Spencer, eds (1984) The Origin of Modern Humans
  73. ^ Robert H. Lavenda and Emily A. Shultz Anthropology, what does it mean to be human? Oxford (New York:2008) 132.
  74. ^ Modern Humans Came Out of Africa, "Definitive" Study Says
  75. ^ Christopher Stringer and Peter Andrews (1988) "Genetic and Fossil Evidence for the Origin of Modern Humans" in Science 239: 1263-1268
  76. ^ Rebecca L. Cann, Mark Stoneking, Allan C. Wilson (1987) "Mitochondrial DNA and human evolution" in Nature 325: 31-36)
  77. ^ a b Searching for traces of the Southern Dispersal, by Dr. Marta Mirazón Lahr, et. al.
  78. ^ "Single, Rapid Coastal Settlement of Asia Revealed by Analysis of Complete Mitochondrial Genomes". 2005. doi:10.1126/science.1109792. {{cite journal}}: Cite journal requires |journal= (help)
  79. ^ a b c d Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ­American Anthropologist Vol. 97, No. 2, pp. 232-239

Further reading

  • Flinn, M. V., Geary, D. C., & Ward, C. V. (2005). Ecological dominance, social competition, and coalitionary arms races: Why humans evolved extraordinary intelligence. Evolution and Human Behavior, 26, 10-46. Template:PDFlink

See also


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).