Jump to content

Crucible: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Crucible materials and description: inserted ext. link for reader convenience
No edit summary
Line 61: Line 61:
[[fr:Creuset]]
[[fr:Creuset]]
[[gl:Crisol]]
[[gl:Crisol]]
[[he:כור היתוך]]
[[nl:Smeltkroes]]
[[nl:Smeltkroes]]
[[id:Krus]]
[[id:Krus]]

Revision as of 11:04, 9 March 2009

A crucible is a heat-resistant container in which materials can be heated to very high temperatures.

The use of crucibles to manufacture Crucible steel, introduced in England in the eighteenth century, was an important part of the Industrial Revolution.



Laboratory crucibles

Crucibles used in Czochralski method

A crucible is a cup-shaped piece of laboratory equipment used to contain chemical compounds when heated to extremely high temperatures. Crucibles are available in several sizes and typically come with a correspondingly-sized crucible cover (or lid).

Rectangular crucibles also exist in various sizes. These are sometimes referred to as combustion boats because of their frequent use in hydrocarbon analysis.

Crucible materials and description

Crucibles and their covers are made of high temperature-resistant materials, usually porcelain or an inert metal. One of the earliest uses of platinum was to make crucibles. Ceramics such as alumina, zirconia, and especially magnesia will tolerate the highest temperatures. More recently, metals such as nickel and zirconium have been used. The lids are typically loose-fitting to allow gases to escape during heating of a sample inside. Crucibles and their lids can come in high form and low form shapes (see this ext. link for photos) and in various sizes, but rather small 10–15 ml size porcelain crucibles are commonly used for gravimetric chemical analysis. These small size crucibles and their covers made of porcelain are quite cheap when sold in quantity to laboratories, and the crucibles are sometimes disposed of after use in precise quantitative chemical analysis. There is usually a large mark-up when they are sold individually in hobby shops.

Crucible after being used
Melting gold in a graphite crucible
Several graphite crucibles of different sizes
Three crucibles used by Thomas Edison.

Use in chemical analysis

In the area of chemical analysis, crucibles are used in quantitative gravimetric chemical analysis (analysis by measuring mass of an analyte). Common crucible use may be as follows. A residue or precipitate in a chemical analysis method can be collected or filtered from some sample or solution on special "ashless" filter paper. The crucible and lid to be used are pre-weighed very accurately on an analytical balance. After some possible washing and/or pre-drying of this filtrate, the residue on the filter paper can be placed in the crucible and fired (heated at very high temperature) until all the volatiles and moisture are driven out of the sample residue in the crucible. The "ashless" filter paper is completely burned up in this process. The crucible with the sample and lid is allowed to cool in a desiccator. The crucible and lid with the sample inside is weighed very accurately again only after it has completely cooled to room temperature (higher temperature would cause air currents around the balance giving inaccurate results). The mass of the empty, pre-weighed crucible and lid is subtracted from this result to yield the mass of the completely dried residue in the crucible.

A crucible with a bottom perforated with small holes which is designed specifically for use in filtration, especially for gravimetric analysis as just described, is called a Gooch crucible after its inventor, Frank Austen Gooch.

For completely accurate results, the crucible is handled with clean tongs because fingerprints can add weighable mass to the crucible. Porcelain crucibles are hygroscopic, i. e. they absorb a bit of weighable moisture from the air. For this reason, the porcelain crucible and lid is also pre-fired (pre-heating to high temperature) to constant mass before the pre-weighing. This determines the mass of the completely dry crucible and lid. At least two firings, coolings, and weighings resulting in exactly the same mass are needed to confirm constant (completely dry) mass of the crucible and lid and similarly again for the crucible, lid, and sample residue inside. Since the mass of every crucible and lid is different, the pre-firing/pre-weighing must be done for every new crucible/lid used. The desiccator contains desiccant to absorb moisture from the air inside, so the air inside will be completely dry.

Use in ash content determination

Ash is the completely unburnable inorganic salts in a sample. A crucible can be similarly used to determine the percentage of ash contained in an otherwise burnable sample of material such as coal, wood, or oil. A crucible and its lid are pre-weighed at constant mass as described above. The sample is added to the completely dry crucible and lid and together they are weighed to determine the mass of the sample by difference.

See also