Wikipedia:Reference desk/Science: Difference between revisions
Lightfreak (talk | contribs) |
|||
Line 1,040: | Line 1,040: | ||
:Increased blood flow is very well correlated with increased neural activity (see [[Functional magnetic resonance imaging]]) but it's not clear what the purpose is. It'd be awesome if we could say that increased firing rates of neuron's caused an increased use of oxygen (and by extension, an increase in heat, not that that's what neuroscientists care about, to my knowledge). But as the article explains, it's not nearly that simple, and is still being actively researched. [[User:Someguy1221|Someguy1221]] ([[User talk:Someguy1221|talk]]) 05:59, 12 March 2009 (UTC) |
:Increased blood flow is very well correlated with increased neural activity (see [[Functional magnetic resonance imaging]]) but it's not clear what the purpose is. It'd be awesome if we could say that increased firing rates of neuron's caused an increased use of oxygen (and by extension, an increase in heat, not that that's what neuroscientists care about, to my knowledge). But as the article explains, it's not nearly that simple, and is still being actively researched. [[User:Someguy1221|Someguy1221]] ([[User talk:Someguy1221|talk]]) 05:59, 12 March 2009 (UTC) |
||
::[http://en.wikipedia.org/wiki/Wikipedia_talk:WikiProject_Neuroscience#Question_about_High_metabolic_rate_in_brain.2C_need_to_know_some_keywords_for_google this may help] I don't have a pubmed access card anymore (but if you go to university, it is free to get one. [[Special:Contributions/71.54.173.193|71.54.173.193]] ([[User talk:71.54.173.193|talk]]) 10:57, 12 March 2009 (UTC) |
Revision as of 10:57, 12 March 2009
of the Wikipedia reference desk.
Main page: Help searching Wikipedia
How can I get my question answered?
- Select the section of the desk that best fits the general topic of your question (see the navigation column to the right).
- Post your question to only one section, providing a short header that gives the topic of your question.
- Type '~~~~' (that is, four tilde characters) at the end – this signs and dates your contribution so we know who wrote what and when.
- Don't post personal contact information – it will be removed. Any answers will be provided here.
- Please be as specific as possible, and include all relevant context – the usefulness of answers may depend on the context.
- Note:
- We don't answer (and may remove) questions that require medical diagnosis or legal advice.
- We don't answer requests for opinions, predictions or debate.
- We don't do your homework for you, though we'll help you past the stuck point.
- We don't conduct original research or provide a free source of ideas, but we'll help you find information you need.
How do I answer a question?
Main page: Wikipedia:Reference desk/Guidelines
- The best answers address the question directly, and back up facts with wikilinks and links to sources. Do not edit others' comments and do not give any medical or legal advice.
March 5
Osseous structures and soft tissue uptake in L3 vertebra
- The discussion about whether this is a request for medical advice is here. StuRat (talk) 05:18, 5 March 2009 (UTC)
This question may be a request for medical advice. It is against our guidelines to provide medical advice. You may find it helpful to read the article: Positron emission tomography, osteoblasts, and osseous tissue, and form your own opinion from the information there. Thank you. StuRat (talk) 19:25, 5 March 2009 (UTC) (edited to remove "contentious" statement – 74 20:40, 5 March 2009 (UTC))
|
magnatizing a charged body
some one has told me that we can magnatized a uncharged body but charged body can not be magnatized.I could not understand this.Is it true ,plz explain —Preceding unsigned comment added by 119.154.28.19 (talk) 01:06, 5 March 2009 (UTC)
- Not true, a magnet can be charged. Graeme Bartlett (talk) 05:14, 5 March 2009 (UTC)
- There might be a misunderstanding here - in general permanent magnets cannot be made from good conductors. But being a poor conductor does not mean the material will make a good magnet. (Before anyone says - Iron which can be magnetised contains a lot of ceramic paricles in the matrix - which are respondsible for it's ability to be magnetised as well as its brittleness - any conduction of electricity is around the particles held in the matrix - pure iron which does not contain any ceramic particles does not make a permanent magnet)FengRail (talk) 13:49, 5 March 2009 (UTC)
- The OP may also be confused because electric charge does exist, while magnetic charge does not. Magnetism in materials is not caused by a (magnetic) charge, but it can co-exist with an electric charge and will certainly interact with moving electric charge. It sounds like you misinterpreted someone explaining: there is no way to put a magnetic charge on an object; but it is definitely possible to put an electric charge on a magnet.. Nimur (talk) 15:34, 5 March 2009 (UTC)
- It is also possible to magnetize a piece of iron after an electric charge is placed on it. Edison (talk) 19:36, 5 March 2009 (UTC)
- Is it possible to magnatise the charge ? ~)
- Not in the conventional sense, which is ferromagnetism. In solid matter, charge is carried by free electrons (either present in excess, as negative charge), or missing (because they moved somewhere else, leaving positive charge behind). Since the charge is carried at an atomic-sized level, and ferromagnetism is the macroscopic alignment of magnetic moments, it would not be possible to "magnetize" the free electrons. However - two more exotic forms of magnetism exist: diamagnetism and paramagnetism, which are both directly related to interaction between electron magnetic moments and an applied external field. I don't think either of these are usually observed in relation to free electrons, though; usually they interact with electrons that are bound in atomic-orbitals. Nimur (talk) 05:45, 6 March 2009 (UTC)
- Is it possible to magnatise the charge ? ~)
- It is also possible to magnetize a piece of iron after an electric charge is placed on it. Edison (talk) 19:36, 5 March 2009 (UTC)
- Either way it's definately possible to magnetise a thing that has an electric charge. As long as it's the sort of thing that can be magnetised. I've no idea if potentially magnetic things are hard to put a charge on - could this be true?FengRail (talk) 00:39, 6 March 2009 (UTC)
- Many ferromagnetic materials are also conductors, which do not hold charge very well because they are hard to electrically isolate (one could be wrapped in rubber or plastic, though). Some of the more exotic ferromagnetic materials are more akin to a ceramic or glass (or a semiconductor) and are likely electrical insulators. Those should hold a static charge without too much difficulty. Yttrium iron garnet shows up in a lot of materials research because it interacts in interesting ways with light, (as polarizing filters and rotators), which of course can be explained at the atomic level as having to do with the electromagnetic interactions with the material's intrinsic atomic-scale magnetic moments and dipole moments. Nimur (talk) 05:41, 6 March 2009 (UTC)
If a metal magnet is placed on a piece of PVC pipe or glass, or hung from a silk it is easy to charge it with electricity, positively or negatively. The charge is able to move around in a conductive magnet . If it is resting on a wooden table or held by someone not insulated from the earth, the charge will naturally leak off. A nonmagnetized piece of ferromagnetic conductor or nonferromagneetivc conductor, such as copper, can also be charged the same way. An uncharged magnet or nonmagetic metal will also be attracted to a charged object. I am not sure what the uncertainty or confusion is here. Edison (talk) 18:52, 6 March 2009 (UTC)
How do we know how high the sea level was 500 million years ago?
I heard that the last time we had the same level of greenhouse gases was some 500 million years ago, and the sea level was then several hundred feet above what it is now. I checked the sea level article, which led me to sequence stratigraphy, but I must admit, I don’t understand that article well enough to get that information. The whole earth crust is continuously in motion, and some of the highest mountains contain sediments from the bottom of the sea. What does it tell us about the sea level 500 million years ago if we find sediments from what was 10,000 feet below sea level then 10,000 feet above sea level now? Mary Moor (talk) 02:03, 5 March 2009 (UTC)
- That article makes precious little sense to me as well, but it appears to be mostly about methods for oil prospecting. I'm also not an expert (sad but true, I'm related to a sad number of them and they would all laugh at my pathetic attempt at a response), but rocks that are under water for extended periods are different than those that are above water. Fossils are the obvious difference (very few cnidarians on land, for example), but there are chemical and physical features as well. If you have a network of points, you can create a map from dot to dot and from known rates of continental drift, and you can give an estimate of where the land was and where the sea was. Just a guess. SDY (talk) 03:25, 5 March 2009 (UTC)
- True - but the OP's question is an entirely valid one - we know that over geological timescales, mountain ranges may be formed by upward buckling of the crust as two plates are forced together (kinda like you can create an upwards ruck in a rug by sliding one end of it towards the other). So just because you find fossils 10,000 feet up a mountain - even if they were fossils of horseshoe crabs or something that could only have formed at close to sea level - that doesn't prove that the ocean was once 10,000 feet deeper than it is now. The problem here is that you should be asking: "Sea level was then several hundred feet above what it is now...relative to what??" You can't just put a mark on the side of a mountain where the sea level was then - and take a tape measure and measure down to where sea level is now - because the mountain itself has moved up or down in the meantime. The only MEANINGFUL measure would be if you could say that "The radius of the earth measured to the surface of the ocean was several hundred feet greater than it is now"...but I very much doubt that's what's being measured here. So I don't know that this measurement is terribly meaningful when you are comparing ocean levels over geological timescales. BUT when we say that global warming might raise ocean levels by 7 meters (or whatever the current estimate is) - we're talking about this happening on timescales of perhaps just 50 years - and the continents, mountains and everything else won't have moved noticiably over that amount of time. So this measure of sea level rise is entirely meaningful...it tells us how many major cities - and even entire nations will vanish beneath the waves. SteveBaker (talk) 04:52, 5 March 2009 (UTC)
- I wasn't clear. Something can be 10,000 feet up or down because the plates and rocks that make up the plates are moving. If you're talking 500mya, the world looks rather different (the map is a little ways down the page). If we assume that the mountains aren't drastically steeper (et cetera), if there is FOO% less dry land then there must be BAR% more ocean therefore there must be BAZ% more water and BAZ% more water equals QUX% feet deeper. SDY (talk) 05:54, 5 March 2009 (UTC)
- No - you were perfectly clear - but I don't see how you can make that equation without also knowing things like how the continents are depressed by the weight of the oceans on top of them (a not inconsiderable matter) - and also the extent of water locked up in the ice caps. I think these claims from so far in the past would be tough to substantiate. SteveBaker (talk) 13:52, 5 March 2009 (UTC)
- I wasn't clear. Something can be 10,000 feet up or down because the plates and rocks that make up the plates are moving. If you're talking 500mya, the world looks rather different (the map is a little ways down the page). If we assume that the mountains aren't drastically steeper (et cetera), if there is FOO% less dry land then there must be BAR% more ocean therefore there must be BAZ% more water and BAZ% more water equals QUX% feet deeper. SDY (talk) 05:54, 5 March 2009 (UTC)
- I would say that the answer is that while some of the Earth's surface is uplifted or subsides, this is not true of all of the surface, at least over a time scale of 500 million years. So, the goal would then be to find a geologically stable area and measure historic sea levels there. StuRat (talk) 05:13, 5 March 2009 (UTC)
- There is so much assumptions one is making when looking at sea level 500,000,000 years ago relative to today. Lets look at how these interfere with making a meaningful comparison.
- There was the same amount of water (including ice and atmospheric water) on earth 500m years ago... Possibly not true. Water comes and goes as it evaporates into space (slowly) and also as more water lands on earth on meteorites, and is released from volcanic activity. On human timescales (measured in the thousands or tens of thousands of years) such effects may not be noticable, but on the multi-million-year timescale, there is likely to be marked differences in the total amount of availible water on Earth.
- There was the same amount of availible space for that water to take up... Also possibly not true. The level of the oceans is due not only to the amount of water in them, but also their shape. Plate tectonics is a complex process, and depending on what the surface of the earth looked like; even assuming we had the same amount of total water to deal with (see above, we may not) then differences in sea level could be due almost entirely to differences in the shape of the surface of the earth; i.e. where the continents were, how low the ocean floors were in comparison to this, yada yada yada.
- That the level of greenhouse gases is the ONLY controling factor in the Earth's temperature... Also not true. The earth's temperature can also be affected by solar output, by surface albedo, by surface area of the oceans vs. land, by overall volcanic activity, etc. etc. These factors remain relatively constant on the short term, which is why measureing greenhouse gases and their effect on climate, say over the past 10,000 years, may be useful, it isn't going to be terribly useful over 500,000,000 years, since so many other parts of the system are changing that we can't necessarily say "The temperature the earth was 500,000,000 years ago should be the same as it is today solely because the greenhouse gases are at comparible levels"...
- Throw all of this stuff in, and even if we COULD actually tell what the greenhouse gas levels and the climate of earth was really like to any detail (and I am not sure we can); it still doesn't mean we can make meaningful statements about sea level based on those statements. --Jayron32.talk.contribs 06:14, 5 March 2009 (UTC)
- There is so much assumptions one is making when looking at sea level 500,000,000 years ago relative to today. Lets look at how these interfere with making a meaningful comparison.
- The existence of one REALLY deep/wide ocean trench at one period in time - and it closing up or filling in some other period in time would erase any hope of appealing to any idea of the total volume of water remaining constant - and therefore the ratio of dry land to ocean surface giving you this answer. If you don't know how deep the ocean went below (or above) present day levels - you can't use the constant volume argument to say very much about overall levels. But unless you're talking about knowing the average radius of the earth measured at "sea level" half a billion years ago - to a rather impressive precision of a couple of hundred feet...you can't make this kind of statement in any meaningful way - no matter what fossil or geological evidence you have. SteveBaker (talk) 13:52, 5 March 2009 (UTC)
- Global sea levels changing by hundreds of feet is not very precise at all, we're talking a couple percent change or so in average ocean depth (current average is about 10k ft/3km). Not a huge change, but not impossible precision either. SDY (talk) 16:14, 5 March 2009 (UTC)
- It's much easier to find out if the sea-level was LOWER than present levels, because the evidence will exist in sedimentary rocks. But, it's complicated - the current height of the shoreline in the rock layer is not necessarily the original height of the water, because on geological timescales, rocks don't stay in the same place. The crust sort of flows and moves, and float up or down, convecting like a very very slow fluid, and occasionally collide catastrophically. Geologists can estimate how fast a vertical upwelling occurs by a number of techniques, ranging from physics-based modeling of material densities, to observations of broken layers and index fossils.
- Old shore-lines and rivers still exist in geological strata and are often CLEARLY visible. In some cases, they can be exposed by erosion, like the amazing canyons carved through the American west. We can also find old geological strata by digging (impractical but possible), or by subsurface imaging. This excerpt, from Geophysical Estimation by Example, shows a marine sounding sonar used to survey the Sea of Galilee, and a bit of signal processing theory to help view what's happening: "The output of the roughening operator is an image, a filtered version of the depth, a filtered version of something real. Such filtering can enhance the appearance of interesting features. For example, scanning the shoreline of the roughened image (after missing data was filled), we see several ancient shorelines, now submerged." Nimur (talk) 15:46, 5 March 2009 (UTC)
At any rate, I'm not an expert, I'm just speculating on how it might have been done and I'm probably wrong. Note that the CO2 level was not claimed to be the cause of high sea levels, simply that it was associated with high sea levels. Chicken and egg possibilities abound, as does pure coincidence. I am, however, almost certain that it has nothing to do with sea level compared with radius of the earth, since that's such a tiny percentage (The stupendously deep Mariana trench is ~10k, radius of the earth is ~6,370 km) that I don't see how it could have been meaningfully measured, and the variability in shape of the earth's crust is such that not only is Kansas flatter than a pancake, but so is Mount Everest. Improbable research is your friend. SDY (talk) 15:55, 5 March 2009 (UTC)
- In a recent paper (October 2008) Haq & Schutter [1] describe evidence for a major but gradual sea level rise throughout the Cambrian, culminating in the late Ordovician about 450 million years ago, also shown in this diagram [2]. This rise is recorded by marine transgressions across previously non-marine strata in stable cratonic areas (much as suggested by StuRat above). How accurate such estimates are compared to present day values, that's another issue. Note that 500 million years ago is not associated with an unusually high sea level on these estimates, it happens to be about half way through a 100 Ma period of gradual rise. Mikenorton (talk) 16:04, 5 March 2009 (UTC)
To go back to the original question: As far as I know nobody seriously claims that "the last time we had the same level of greenhouse gases was some 500 million years ago". This seems to be a case of Chinese whispers. We have good evidence that CO2 is higher than during the last 800000 years, and we believe it to be higher than during the last 20 million years. Not a short while, but very different from 500 million years. James Hansen's somewhat famous quote is "The last time the world was three degrees warmer than today - which is what we expect later this century - sea levels were 25m higher." Hansen was talking about a period about 3 million years ago. --Stephan Schulz (talk) 16:34, 5 March 2009 (UTC)
- Thank you; it was indeed Chinese whispers. I think it originally comes from Field Notes from a Catastrophe, and I would have to get the book to see the actual numbers. But that was only the background for my question. I wanted to know how we even know how high the sea level was many years ago. The beautiful diagram Mikenorton showed us has three very different curves for the sea level, which could indicate that there is so little consensus among scientists as to render it practically useless. But then again, the diagram was funded by the oil industry, which has used precisely this argument of "there's no consensus among scientists" to persuade the last administration to do nothing about climate change. Mary Moor (talk) 17:55, 5 March 2009(UTC)
- Mary, the curves in that diagram are actually very similar. The two to the left that cover the whole time interval both come from the Haq & Schutter paper and appear to be slightly different ways of presenting the same base data (with different smoothing etc.). The third curve, from a source that I haven't managed to find yet, shows a similar overall shape (at least to my eye) but rather greater short term variation. There are plenty of critics of these curves but I'd be surprised if anyone suggested that they were anything other than a genuine attempt to estimate past sea level changes. They were created to better understand observed sedimentary sequences in the geological record. Mikenorton (talk) 22:21, 6 March 2009 (UTC)
- Thank you, this is very helpful! I also better understand your earlier comment now: There are areas that are so stable that we can consider them as static, correct? I now see the similarity between the two first curves. (The sudden drops of sea levels of 50m or more in the left curve were a bit scary, anyway.) As for the third curve, however, it still seems very different to me: During Sheinwoodian, the left curves experience one of their highest periods, above 200m, but the third curve varies between 50m and 0m. Mary Moor (talk) 22:11, 7 March 2009 (UTC)
- Mary, the curves in that diagram are actually very similar. The two to the left that cover the whole time interval both come from the Haq & Schutter paper and appear to be slightly different ways of presenting the same base data (with different smoothing etc.). The third curve, from a source that I haven't managed to find yet, shows a similar overall shape (at least to my eye) but rather greater short term variation. There are plenty of critics of these curves but I'd be surprised if anyone suggested that they were anything other than a genuine attempt to estimate past sea level changes. They were created to better understand observed sedimentary sequences in the geological record. Mikenorton (talk) 22:21, 6 March 2009 (UTC)
- The trouble is that modern estimates for sea level increase for (say) 3 degrees of global warming are not calculated by looking back in time to when we last had those temperatures. They are estimated based on several things:
- When the temperatures rise 3 degrees - any ice that's currently within 3 degrees of melting - will melt. We can pretty much know the volume of that ice. Of course floating sea ice (such as at the North Pole) doesn't count because it's already displacing its own weight of seawater. The main concern is glaciers, snow-pack and antarctica.
- Water that's more than a few degrees above freezing expands as it gets hotter. So knowing the present volume of all of the oceans - it's easy to calculate how much all of that water will expand by.
- So those two things give us an idea of just how much more water (by volume) there will be in a 3 degree warmer world...and it's a heck of a lot. Divide that by the surface area of the oceans and what you have left is a rough idea of how much the ocean will rise. There are a couple of secondary effects - one is that as land is inundated by water, it's under more pressure - and that extra weight sitting on top of our continents could push them downwards - allowing yet more flooding. Secondly - (and annoyingly) the exact opposite of that effect happens in the antarctic - where the loss of ice above the land of that continent will allow antarctica to rise up somewhat because of the loss of weight pushing down on it...this displaces more water - which then floods the other continents still more.
- 25 meters is definitely on the upper end of scientific consensus - but even the lower estimate of 7 meters is pretty frightening if you live in a low-lying city such as New York, London, Paris...you name it. Claiming that "scientists don't agree" is a reasonable claim providing that you are quite clear on what it is that they don't agree on. It's not a matter of "Is this going to be a total disaster or not?" - it's a matter of "25 meters or only 7 meters." - or to put it more pointedly: "Do we lose 100 major cities world-wide or only 30? Are three billion people going to be made homeless or only two? Will loss of low lying fertile farmland result in 50% of humanity starving to death or only 30%." To claim that scientists can't agree on whether this is or is not the single most important thing for the world to focus on fixing - is quite incorrect. The agreement on that point is as close to unanimous as matters. SteveBaker (talk) 20:04, 5 March 2009 (UTC)
- The point was that, based on what we know about the ancient situation, we can make assumptions about our time, not the other way round. I assumed that this was a finding of geology. Mary Moor (talk) 03:26, 6 March 2009 (UTC)
- As an approximate estimate, melting all the ice on Earth into the ocean would raise sea levels by about 75 metres (250 ft). However, there are factors that can raise this level further, such as isostatic rebound in coastal or undersea areas (land displaces the water, forcing the global sea level to rise), thermal expansion, or a decreased atmospheric water vapor content (more of it being in the ocean). ~AH1(TCU) 00:52, 8 March 2009 (UTC)
- Also, finding the volume of all the ice at a certain melting threshold really isn't a good indicator of how much sea levels will rise. For one thing, a global temperature rise of 3C means that the poles will usually warm faster than at the equator, and land warms faster than ocean. Also, some ice shelves, especially West Antarctica, are vulnerable to being flooded from underneath, lubricating the ice and sending it into the ocean faster, and one example of where this could occur is at Pine Island Bay. ~AH1(TCU) 01:49, 8 March 2009 (UTC)
- As an approximate estimate, melting all the ice on Earth into the ocean would raise sea levels by about 75 metres (250 ft). However, there are factors that can raise this level further, such as isostatic rebound in coastal or undersea areas (land displaces the water, forcing the global sea level to rise), thermal expansion, or a decreased atmospheric water vapor content (more of it being in the ocean). ~AH1(TCU) 00:52, 8 March 2009 (UTC)
- The point was that, based on what we know about the ancient situation, we can make assumptions about our time, not the other way round. I assumed that this was a finding of geology. Mary Moor (talk) 03:26, 6 March 2009 (UTC)
Chlorine in tap water
How poisonous is Chlorine in tap water?--Mr.K. (talk) 13:06, 5 March 2009 (UTC)
- To you or the bacteria? 76.97.245.5 (talk) 13:58, 5 March 2009 (UTC)
- Sufficiently poisonous to kill the things it's supposed to kill, particularly E. coli, which, believe me, is good news for all of us. There isn't enough of it to be harmful to humans, though. -- Captain Disdain (talk) 14:05, 5 March 2009 (UTC)
- Some reading material [3] - 76.97.245.5 (talk) 14:34, 5 March 2009 (UTC)
- This one's better [4] and also see Risk assessment. To reduce health risks you would do better giving up commuting than water chlorination. Living is detrimental to one's health, but beats the alternative :-)76.97.245.5 (talk) 16:56, 5 March 2009 (UTC)
- To answer as simply as possible, not nearly as poisonous as Cholera. --Jayron32.talk.contribs 01:43, 6 March 2009 (UTC)
- Ordinary E coli are not dangerous. The reason why E coli content is used as a measure of contamination is usually because it's an indicator of the presence of other bacteria, which are not as benign. If you get sick from bacteria in your drinking water, it's statistically unlikely to be due to E Coli. --Pykk (talk) 09:27, 6 March 2009 (UTC)
Chlorine is an essential nutrient provided by tap water, as is fluoride. See Nutrients in Drinking Water, Page 3.71.30.254.216 (talk) 04:03, 6 March 2009 (UTC)
- The link is actually talking about chloride, Cl-. Chlorine in drinking water is hypochlorous acid, HOCl / OCl-. Even if you accept them as the same, describing it as an essential nutrient is an extreme stretch in Western society. Our diet is far too rich in sodium chloride (table salt); any contribution from drinking water is vanishingly small by comparison. arimareiji (talk) 15:22, 6 March 2009 (UTC)
- Chlorine in tap water is dangerous to fish. Also, see opposition to water fluoridation. ~AH1(TCU) 00:44, 8 March 2009 (UTC)
Interchangeable left and right hand driving
Is there a car where you can interchange the wheel from left to right and back? At least, was any car designed so that this is easier to accomplish?--Mr.K. (talk) 13:12, 5 March 2009 (UTC)
- There are a few cars out there that have a center steering wheel - exotic three seaters sports cars and concept cars, typically[5]. The Toyota Alessandro Volta has three seats in the front - and because it's completely drive by wire, any one of the three people can drive! But sadly, it's just another concept car. Of course there are also driving instruction cars fitted with steering wheels and pedals in both front seats...although these days those are very rare and most instructors have just a set of pedals on the passenger side. Many years ago, BMW ran a newspaper ad showing how their cars could be easily switched from left to right hand drive...and later advertised a car with no steering wheel and center console...but alas, both were just an April Fools pranks. [6]
- My classic 1963 Mini has a steering wheel and pedals that can be switched sides in perhaps 4 hours with the right tools...but I suspect you're looking for something a lot more convenient than that. SteveBaker (talk) 13:42, 5 March 2009 (UTC)
- Yes, 4 hours would be too much. I was thinking about something more convenient for casual drivers in Europe. The strange thing is that the auto industry doesn't offer this extra. Thousands of vehicles cross the Channel everyday and some drivers would be clearly happy of being able to drive on the proper side of the road. --Mr.K. (talk) 16:48, 5 March 2009 (UTC)
- I would hope that most UK drivers, having crossed the Channel, DO drive on the "proper side of the road". Evolutionary processes will reduce the numbers of those who do not. --Cookatoo.ergo.ZooM (talk) 19:51, 5 March 2009 (UTC)
- Some ways it could be done and the advantages and disadvantages of each:
- 1) Center driver position. This has the advantage of being safer, for the driver, as they are not close to either side of the car, making them less likely to be killed if the car is "T-boned". It has the disadvantage of making the driver slide to the center when they get in, could make using drive-through windows difficult, and could make it difficult to fit another passenger in front. A triangular-shaped car addresses some of these issues, but also brings in some stability concerns.
- 2) Duplicate driver positions. This is best for driver flexibility, but does increase the complexity and thus cost of the vehicle. It might be either more or less reliable, depending on whether the systems are truly independent of each other. A front seat passenger may also find the unused steering wheel and controls are "in the way".
- 3) Movable driver position. This would make it necessary to make the car "drive by wire", as mentioned above. This has it's own risks, as losing control of the vehicle at high speed is a distinct possibility, since electrical systems are prone to sudden, catastrophic failure, while mechanical systems more often suffer from gradual reduction in function. StuRat (talk) 20:01, 5 March 2009 (UTC)
- The Unimog can be changed from LHD to RHD "in the field".195.128.251.103 (talk) 23:11, 5 March 2009 (UTC)
- FWIW, British Army soldiers get posted to Germany a lot, and usually take their RHD cars with them - in fact, they often buy a new car just before going as the purchase of a new car for "export" is subject to a little less tax. Though the added difficulty (slightly reduced visibility on right-hand bends) of the driver being on the "wrong" side while driving on the Continent is not zero, in practice it doesn't seem to be sufficient to warrant temporarily switching to a LHD car, the expense of which would probably be roughly comparable to the higher cost of a car designed to be L-R convertible.
- Moreover, any visibility advantage of switching from one's accustomed driving side might be more than negated by the potential danger of the gearstick and other controls being in an unaccustomed position. Otherwise, as international lorry drivers constantly move between the two driving regimes, it might be thought that their vehicles would more economically benefit from convertability, although the much improved visibility from their high cabs probably reduces what visibility problem there is.
- I dimly recall that a couple or so decades ago, some model of family car built for both UK and Continental sales with the corresponding variations in driver position actually had pedal mechanisms on both sides, those on the passenger side obviously lacking the actual pedal extensions through the floor. Unfortunately the floor was over-flexible and it was found that a passenger could, when bracing a foot on the floor, operate the accelerator, with predictably interesting consequences. Probably that particular design also retained some portions of the steering-column mounting on the passenger side, and would have been more readily convertible than most cars. 87.81.230.195 (talk) 04:39, 6 March 2009 (UTC)
I've driven all four ways (RHD car on UK roads, RHD car on French and US roads, LHD car in the US and a French LHD car in the UK)...switching from one to another is EASY - and the flipping of the shifter to the opposite side takes no adaptation at all. Being on the correct side of the road is a little confusing in big areas like parking lots - but once you're out on the open road, it's not at all difficult - and after 10 minutes of driving around town - you've go it nailed. The difficulty of adapting is very overrated. The only weird thing is that even after 15 years of driving (mostly) LHD, I still occasionally walk up to the wrong side of the car when I approach it from the front in a parking lot! The hard (and dangerous) thing is that for RHD in France/USA and LHD in UK, you can't overtake safely - you have to pull so far out past the vehicle in front before you can see around it...if there is something coming the other way - you're doomed. For my restored 1963 RHD Mini here in Texas, I've turned the passenger-side door mirror around 180 degrees so I can nudge the car out just a little and then see around using the mirror. It works pretty well and I'm surprised that things like that aren't sold as accessories for Brits taking their cars across the channel to France & Belgium. SteveBaker (talk) 05:30, 6 March 2009 (UTC)
Systemic Beta Hemolysis Infection
Is it possible that one can get systemic Beta hemolysis (Beta Strep) infection? I know that some women can get a Beta Strep infection vaginally but it possible that it could spread throughout the body? Also, does anyone know why more research hasn't been done on this? --Emyn ned (talk) 14:19, 5 March 2009 (UTC)
- Well, yes, it's possible. Streptococcus agalactiae is an important cause of neonatal sepsis, especially effecting premature babies. Less commonly, it can effect pregnant women or non-pregnant adults. [7] - Nunh-huh 14:24, 5 March 2009 (UTC)
- We have a page for almost everything, including the beta-hemolytic streptococci, which notably include Streptococcus pyogenes. --Scray (talk) 00:16, 6 March 2009 (UTC)
Woman with 3 breasts
Warning: The video linked hereunder is sexually explicit.
The specific link is www.redtube.com/21290 Does the this unusual thoracic development shown in the linked video seem credible or faked?
I remember seeing cases of people having an extra nipple or two that are located under the standard two, and underdeveloped. I presume these are so easily removed surgically that their actual rate of occurrence is unrecorded - or does anyone know about these? Can anyone add any knowledge about the fully formed triplet exhibited by the actress in the video? Is it practical to "build" such a chest by cosmetic surgery? If her triple breasts are a genuine mutation are other internal abnormalities likely, and should all 3 breasts lactate? What can one say about human breast number and evolution? Is there evidence that human mutation is increasing? Cuddlyable3 (talk) 14:38, 5 March 2009 (UTC)
- We have an article, Accessory breast, that would be a good place to start. --Tango (talk) 15:13, 5 March 2009 (UTC)
- Milk lines extend from the axilla to the groin, both on the left and the right frontal side of the body (see the teats of cats or pigs). It would seem to be anatomically impossible for a mammary gland to develop in the centre. --Cookatoo.ergo.ZooM (talk) 16:53, 5 March 2009 (UTC)
- The article I linked to describes cases of extra breasts growing on the feet, so I guess it is possible for them to grow pretty much anywhere. I do think the case shown in the video is rather unlikely, though - the three breasts are very symmetrical and equal in size, which I think would be extremely rare. --Tango (talk) 17:01, 5 March 2009 (UTC)
- The only way I can imagine a third breast between the other two is in the case of conjoined twins, in particular, the parapagus type. However, they would likely have other duplicated body parts, as well, such as heads. StuRat (talk) 19:35, 5 March 2009 (UTC)
- I was sure to have noticed a third head somewhere in this shortish documentary. --Cookatoo.ergo.ZooM (talk) 19:56, 5 March 2009 (UTC)
- In another video the girl says that her two side boobs (hehe) were originally small, but she got implants to make all three about the same size. —Preceding unsigned comment added by 99.255.228.5 (talk) 00:44, 6 March 2009 (UTC)
That is so fake - the middle boob has zero jiggle factor - it's glued on there. Clever makeup work - nothing more. SteveBaker (talk) 05:16, 6 March 2009 (UTC)
- I agree with Steve. Frankly, most anatomical oddities seen in porn should probably be assumed to be fake, unless they're incredibly convincing and constantly interacted with... which this one hardly is. The simple fact that she's extremely unwilling to let the middle breast just hang loose and is almost constantly holding on to it should be a an obvious hint: if she didn't do that, it'd fall off. It is a pretty good makeup job, though. -- Captain Disdain (talk) 08:48, 6 March 2009 (UTC)
- "Jiggle factor" - never thought I'd hear that term outside of anime reviews. ^_~ And although I haven't seen said video, CD's argument sounds intuitively correct. arimareiji (talk) 14:32, 6 March 2009 (UTC)
- I'm a computer graphics engineer and I work in the field of computer games. In my chosen profession, "jiggle factor" (as applied specifically to ridiculously oversized boobs in female game characters) is an entirely accepted term which appears in any number of serious papers published at conferences on graphics technology. It is typically scaled from 0 to 1. The person in the video has an 0.0 boob in the center - and I'd judge about an 0.6 or so on either side. "Trust me - I'm an expert!" :-) SteveBaker (talk) 20:57, 6 March 2009 (UTC)
- And what would the "jiggle factor" be in Dead or Alive Xtreme 2? 2? 3? --Carnildo (talk) 00:59, 7 March 2009 (UTC)
- On a scale of 0 to 1? 11. --Tango (talk) 16:24, 7 March 2009 (UTC)
- Oh so now you're a "computer graphics engineer" eh? Last time you were some mini driving texan. Just sayin'. 85.181.144.5 (talk) 19:21, 7 March 2009 (UTC)
- And what would the "jiggle factor" be in Dead or Alive Xtreme 2? 2? 3? --Carnildo (talk) 00:59, 7 March 2009 (UTC)
- Yeah, because no one in Texas drives a Mini and works as a computer graphics engineer. Sir, you appear to have forgotten your stupid on. -- Captain Disdain (talk) 09:50, 8 March 2009 (UTC)
LC/NE system and the ascending activating systems
Sometimes it is hard to connect information from different sources. In the article on stress, the "LC/NE system" is mentioned. In my textbook on neuropsychology, the authors mention "the four ascending activating systems, classified by the dominant transmitter and their neurons: the cholinergic, noradrenergic, dopaminergic and serotonergic systems". My question: is the LC/NE system the same as the noradrenergic system? And if not, what is the difference? Lova Falk (talk) 17:27, 5 March 2009 (UTC)
- This [8] source has: "The principal components of the stress response consist of the hypothalamic-pituitary-adrenal (HPA) system (most commonly known as the HPA axis), the locus coeruleus-norepinephrine (LC-NE) system, and the extrahypothalamic corticotropin releasing hormone (CRH) system." --Cookatoo.ergo.ZooM (talk) 18:04, 5 March 2009 (UTC)
- Thank you, but that is not an answer to my question... Lova Falk (talk) 20:33, 5 March 2009 (UTC)
- LC refers to the locus coeruleus, which is the primary brain stem nucleus where norepinephrine (NE) is produced. The neurons of the LC project widely throughout the brain (see the norepinephrine article for a list) and have an "activating" effect under conditions of stress. So, yes, the LC/NE is most likely the ascending activating system described by your textbook. --- Medical geneticist (talk) 23:11, 5 March 2009 (UTC)
- Thank you! Personally I think that neuroscience textbooks should mention all alternative names for the structures or systems they describe. All those different names for the same thing just creates so much unnecessary confusion... Lova Falk (talk) 11:09, 6 March 2009 (UTC)
Question on mag fields and EMF
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.70 V and a current of 3.5 A are induced in the coil. The wire is the re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What emf and current are induced in the square coil?
So I have no idea how to get the EMF without the area of the circle which the coil creates. I'm assuming the EMF changes due to the area of the coil. I'm also assuming that if you shape a circular coil into a square the area should be the same anyway... I know that the EMF and the current can give me the resistance of the wire. I got .2 ohms of resistance. With this, if I get the EMF of the square coil, I can get the current (I think). But I don't know how to get the EMF of the square coil. I'm really confused as to how to go about this... 98.221.85.188 (talk) 19:34, 5 March 2009 (UTC)
- If you are forming it out of the same wire then the perimeter will be the same, not the area. If you know how to calculate EMF given area (unfortunately, I don't!), then do it in reverse to get the area and perimeter. You should then be able to use that, together with the formulae for area and perimeters of circles and squares to get the answer. --Tango (talk) 19:39, 5 March 2009 (UTC)
- The magnetic field is changing... EMF= -(number of turns in coil)*[(change in Mag Flux)/(change in time)]. I know Magnetic flux = (Mag field) * (Area of the coil). The magnetic field is changing though, so I'm not sure how to get the Magnetic flux... 98.221.85.188 (talk) 19:45, 5 March 2009 (UTC)
- You are given one more piece of information - the current. What formulae do you know with current in? --Tango (talk) 20:28, 5 March 2009 (UTC)
- You don't need to compute the magnetic flux. All you need is the fact that the emf is proportional to the area. So the ratio between the two emf's (before and after) = the ratio between the two areas (before and after) which, as Tango pointed out, comes out of the formulae for the perimeters. Dauto (talk) 22:05, 5 March 2009 (UTC)
- You are given one more piece of information - the current. What formulae do you know with current in? --Tango (talk) 20:28, 5 March 2009 (UTC)
- The magnetic field is changing... EMF= -(number of turns in coil)*[(change in Mag Flux)/(change in time)]. I know Magnetic flux = (Mag field) * (Area of the coil). The magnetic field is changing though, so I'm not sure how to get the Magnetic flux... 98.221.85.188 (talk) 19:45, 5 March 2009 (UTC)
- The OP describes a shorted wire loop that is extracting energy from a varying magnetic field. Energy, not emf, is proportional to the loop area. We must assume the external magnetic field is uniform except where it is perturbed close to the loop, and that the resistance is constant. The emf (to 4 sig. figs.) in the square loop is 0.5190 V and not 0.5498 V.Cuddlyable3 (talk) 23:18, 5 March 2009 (UTC)
Force meter question
Dear Wikipedians:
In the above scenario, if m is also 1 kg, then I know the force meter will register 9.8 N as the tension. However, what will the force meter register if m is 2 kg?
Thanks.
L33th4x0r (talk) 20:12, 5 March 2009 (UTC)
- What will it register if M is infinite (i.e. fixed to the floor)? --Stephan Schulz (talk) 21:29, 5 March 2009 (UTC)
- With the weight imbalance, the system will begin to accelerate and the tension will be just enough to keep the acceleration of the two masses equal. So the solution can be obtained by calculating the acceleration of each mass in terms of the tension T, setting the two accelerations equal, and solving for T. I don't know if this is homework or not, so I am not giving an explicit answer, but the calculations are pretty straight forward. -- Tcncv (talk) 21:42, 5 March 2009 (UTC)
- But the force meter is accelerating too, so the tensions in the two cables are only equal if we assume the force meter has negligible mass. If the force meter has a non-negligible mass than the tensions are not equal - but then we need to know the mass of the force meter to solve the problem. Gandalf61 (talk) 22:19, 5 March 2009 (UTC)
- This is a physics problem; real objects need not apply. Force meters are always massless — in exactly the same way that we assume that the pulleys are frictionless and have no moment of rotational inertia, and that the rope in the system is massless, and that the meter doesn't drag on the ideal frictionless physics table.... TenOfAllTrades(talk) 23:10, 5 March 2009 (UTC)
- Lets start again, if m=1kg also then the force meter measures (2kg) = 19.6N
- If fixed to the floor then the force meter measures (1kg) 9.8N
- If the masses are 1kg and 2kg then the thing will move, the net force being (2-1)kg = 1kg = 9.8N on a total mass of 3kg... this gives you the acceleration of the masses as 9.8N/3kg = 1/3 of gravity.. can you work out the final answer from there?FengRail (talk) 00:31, 6 March 2009 (UTC)
- The original stated tension of 9.8N is correct. Whether or not one end is fixed in the balanced configuration has no effect. Your third statement is correct (after minor editing for units) and is another way to get to the solution. -- Tcncv (talk) 01:51, 6 March 2009 (UTC)
- Why is the tension 9.8N and not 19.6N like FengRail said?
- If m is 2kg, then the apparatus is not balanced. m will descend, the 1kg mass will ascend, and the force meter will move to the left; until one of them encounters a pulley or the floor. Astronaut (talk) 02:53, 6 March 2009 (UTC)
- If the tension were 19.6N, the upward force of the cable on the masses would be twice the downward force due to gravity. The result would be both masses accelerating upward (at least enough to reduce the cable tension). Another way to look at it: Consider the balanced system of two weights. Now drive a sturdy bolt through the heart of the force meter and into that frictionless table (don't let the lab manager catch you). The cable tension has not changed, but now we effectively have separate cable, pulley and weight systems both anchored at the bolt. -- Tcncv (talk) 03:53, 6 March 2009 (UTC)
- I have no idea what you are on about - the tension (forces) due to a mass of 1 kg under gravity is 9.8N, there are 2 of these forces working in opposite directions, therefor the total tension is 2x9.8n
- In the orginal question, it is incorrectly stated:
I attempted to correct this statement.FengRail (talk) 10:58, 6 March 2009 (UTC)"In the above scenario, if m is also 1 kg, then I know the force meter will register 9.8 N as the tension"
- No, it will register 9.8N, because there must be an equal and opposite force for the weights to be in equilibrium. Think of it this way: If m was instead a hook on the floor, what would the scale register? 124.169.174.199 (talk) 11:54, 6 March 2009 (UTC)
- If the tension were 19.6N, the upward force of the cable on the masses would be twice the downward force due to gravity. The result would be both masses accelerating upward (at least enough to reduce the cable tension). Another way to look at it: Consider the balanced system of two weights. Now drive a sturdy bolt through the heart of the force meter and into that frictionless table (don't let the lab manager catch you). The cable tension has not changed, but now we effectively have separate cable, pulley and weight systems both anchored at the bolt. -- Tcncv (talk) 03:53, 6 March 2009 (UTC)
- A force meter does not measure the sum of the forces on either side of it. The way that the hook and scale are attached to the solid body of the force meter introduces an asymmetry - it always registers the force on the hook side only. For an ideal massless force meter or for a force meter in equilibrium, the two forces will be equal in magnitude, so we often loosely say that the force meter registers "the" force, as if there were just one. For an accelerating force meter with non-negligible mass, the two forces will be unequal - but it is still just the force on the hook side that is registered on the force meter. Gandalf61 (talk) 13:49, 6 March 2009 (UTC)
- Look at the diagram above, the two equal and opposite forces are on either side of the force-ometer, forces are vectors right, (so if one of the forces was zero, what would the other force have to be to give the same tension?)
- Why not try an experiment - find a weight that doesn't quite cause breaking in a length of string or wire, then try to replicate the diagram with two of those weights on either side - see if the sting brakes... signed FengRail —Preceding unsigned comment added by 213.249.232.187 (talk) 14:31, 6 March 2009 (UTC)
- Gandalf is right (if the hook can be considered massless, even though the forcemeter isn't). Dauto (talk) 14:12, 6 March 2009 (UTC)
- Not really. Consider two people playing tug-of-war, with a force meter connecting the two ropes. Does it measure only the force of one person pulling, or two? arimareiji (talk) 14:28, 6 March 2009 (UTC)
- A force meter does not measure the sum of the forces on either side of it. The way that the hook and scale are attached to the solid body of the force meter introduces an asymmetry - it always registers the force on the hook side only. For an ideal massless force meter or for a force meter in equilibrium, the two forces will be equal in magnitude, so we often loosely say that the force meter registers "the" force, as if there were just one. For an accelerating force meter with non-negligible mass, the two forces will be unequal - but it is still just the force on the hook side that is registered on the force meter. Gandalf61 (talk) 13:49, 6 March 2009 (UTC)
- Simpler example: Hold the top of the force meter in your hand and hang a 1kg mass from the hook. For meter will say 9.8N, obviously. Now consider the forces on the meter - there is a force of 9.8N from the mass pulling it down, and there is a force of 9.8N from your hand pulling it up. That's exactly the same forces are are on the meter in the diagram above (just rotated 90 degrees), so the meter will show the exact same value. --Tango (talk) 14:42, 6 March 2009 (UTC)
- Tug-of-war - force meter registers force of only one person pulling. Exactly the same as if just one person pulling and other side of force meter attached to solid wall. Gandalf61 (talk) 16:08, 6 March 2009 (UTC)
(undent) Vaguely-related question that this reminds me of, which came up a little while ago among coworkers: Say that a person weighs too much for a scale to register. Can you accurately measure their weight by getting them to step onto two scales, one foot on each scale, and adding the registered weights? arimareiji (talk) 14:52, 6 March 2009 (UTC)
- Yes, that should work. The scales measure the force required to stop them falling through the floor (which is equal to their weight), that force is the same regardless of what is applying it and forces in the same direction just add when combined. So, yes, I can't see why that wouldn't work. --Tango (talk) 15:41, 6 March 2009 (UTC)
- Oh, I get it now (I think?). The purpose of the experiment is to demonstrate to students that there are two equal and opposite forces at work. The teacher first demonstrates that a 1kg weight suspended from a fixed point registers 9.8N on the force meter. The teacher explains that there are two forces - gravity pulling the weight down with a force of 9.8N, and the fixed point pulling up with an opposite 9.8N force. Some students might doubt the existence of this upwards force, so the teacher sets up the above experiment with m = 1kg. If the force meter reads the same 9.8N then it shows the upwards force must exist and be equal and opposite. Astronaut (talk) 16:22, 6 March 2009 (UTC)
Great little circle jerk, wikipedia reference desk at its best.FengRail (talk) 18:32, 6 March 2009 (UTC)
Let's write down Newton's second law of motion(EOM), for our two masses and the rope, then we can get into the answer: the resultant force acting on a mass is equal mass times of its acceleration. the magnitudes of each acceleration of the masses are equal, which relates our equations. further assumption is the negligible mass of the rope (which according to the EOM of the rope, yields: the magnitudes of two tension forces, acting on each end of it, are equal). the magnitude of acceleration becomes (abs(m2-m1)*g)/(m1+m2) , and tension becomes(in this situation) (4/3)*g . Re444 (talk) 18:55, 6 March 2009 (UTC)
- Correct. In terms of force, (4/3) × 9.8N or about 13.1N. That leave a net upward force of 3.3N on the 1kg mass and a net downward force of 6.5N on the 2kg mass. Ignoring round-off errors, that gives the masses the same acceleration. -- Tcncv (talk) 01:19, 7 March 2009 (UTC)
- Wow, this is soooo good! Thanks for all the response! L33th4x0r (talk) 03:25, 7 March 2009 (UTC)
Why blood groups and Rh?
I couldn't find in our article or figure out in google why blood groups are needed. What is their actual purpose, why don't we have some universal blood group? And what is the purpose of Rh? 85.132.54.6 (talk) 20:32, 5 March 2009 (UTC)
- Why should they be "needed"? As with most evolutionary matters, they simply are. Also, for quick reference: blood type/ABO blood group system and Rhesus blood group system. — Lomn 21:04, 5 March 2009 (UTC)
- Blood groups exist because they turned up one day and they don't do any harm, so they stuck around. Blood groups only became significant in any way when we started doing blood transfusions, which was extremely recently in evolutionary terms. (I guess there is a slight disadvantage to them since there are sometimes problems with Rh- mothers having Rh+ babies [I think it's that way around], but it's very rarely a problem because, if memory serves, it's only the second such baby that dies, and even then only if there were complications with the first one.) --Tango (talk) 21:11, 5 March 2009 (UTC)
- There was (until recently) no evolutionary pressure in favour of compatibility or homogeneity (and so things just drifted apart, as they are wont to do). Right now there is a modest pressure - if someone has a group that requires transfusion with a rarer type, they run the disk of the hospital not having the right kind, and thus their dying without issue. If medicine were to remain exactly as it is for a few thousand years then you would expect to see a modest increase in the proportion of individuals who have transfusion-friendly blood when compared with those who don't. 87.115.143.223 (talk) 21:13, 5 March 2009 (UTC)
- There is one modest piece of evolutionary pressure, Hemolytic disease of the newborn (HDN), which is part of why the Rh system was discovered in the first place. ABO rarely has a role in HDN. The ABO and Rh red cell antigen groups are not known to be functional, but there are some red cell antigens, such as the Duffy antigen system (usually "Fy" in shorthand) which are known to be meaningful outside of blood typing for medical or investigative purposes. In most of these cases, it's likely that no one has found out exactly what these bits of stuff on the extracellular matrix of the cell are for. SDY (talk) 21:15, 5 March 2009 (UTC)
- Hmm, that's interesting. So that would imply either that human blood groups are slowly converging (from a more disparate ancestry - RH+ == grandma was a Neanderthal) or there is weak opposing pressure from some unknown utility in heterogeneity (e.g. resistance to some blood-borne disease). 87.115.143.223 (talk) 21:25, 5 March 2009 (UTC)
- I'm not sure when the mutation happened which causes some people not to have the RhD antigen (I think everyone had it originally, but I may be wrong), but it wasn't necessarily that long ago. It only takes one mutation followed by the person with that mutation having lots of children for it to spread fairly widely within just a few thousand years. There may be some evolutionary pressure towards heterogeneity, but don't forget the importance of random chance. If the evolutionary pressure, in whatever direction, is very weak then random chance can end up being far more significant, even over the long term. --Tango (talk) 21:34, 5 March 2009 (UTC)
- Hmm, that's interesting. So that would imply either that human blood groups are slowly converging (from a more disparate ancestry - RH+ == grandma was a Neanderthal) or there is weak opposing pressure from some unknown utility in heterogeneity (e.g. resistance to some blood-borne disease). 87.115.143.223 (talk) 21:25, 5 March 2009 (UTC)
(outdent)
- In general, when a genetic polymorphism is maintained in a population, some kind of balancing selection is at work. Polymorphisms that are neutral tend to disappear rather quickly. In this paper, the authors develop a model which attempts to explain the ABO gene frequencies by frequency-dependent selection (a type of balancing selection). They hypothesize that the reason is that bacteria may adapt differentially to the different carbohydrate structures of ABO antigens, and that, in addition, the natural antibodies that we have against the A and B antigens we lack, may offer protection from viruses that carry A and B antigens in their envelope derived from their previous host.
- Rh proteins are believed to be ion transporters, involved in ammonia transport. I have not come accross any articles that attempt to explain the maintenance of Rh polymorphisms, although Hemolytic disease of the newborn may play a part, as suggested by SDY. --NorwegianBlue talk 21:40, 5 March 2009 (UTC)
- [9] discusses the matter, I'm still reading it so I'm not sure what it concludes (it seems to be suggesting there must be a balancing selection of some kind). --Tango (talk) 21:50, 5 March 2009 (UTC)
- Not necessarily relevant, but my favorite bit about blood is that the gene for type "O" is the gene for type "A" with single base pair different, a nonsense mutation. Tiny change in genetics, potentially lethal difference in transfusions. SDY (talk) 22:11, 5 March 2009 (UTC)
- One of the mysteries in transfusion medicine is why people who have never been exposed to other ABO types have antibodies to those types. For example, a person who is type B (not to be confused with the immune system's B cells) has antibodies to type A immediately after the immune system develops (by about 3-6 months of age). Speculating: this would give a strong evolutionary advantage if both A and B "look like" viral antigens, since even if only half of the population is immune, the disease may have trouble persisting. Type "O" in this case would be the best of both worlds, since it would grant immunity to both "A-like" and "B-like" viral antigens. SDY (talk) 22:55, 5 March 2009 (UTC)
- Re the paper that Tango linked to: Note that it was written at a time when the D, c/C and e/E antigens were thought to be encoded by three separate, linked genes. It has since been discovered that the c/C and e/E antigens are two epitopes on the same molecule. --NorwegianBlue talk 22:23, 5 March 2009 (UTC)
Didn't I read something somewhere about some mild correlation where people with blood group X were a bit more likely to get disease Y but a bit less likely to get disease Z, for suitable values of X, Y, and Z; and that the geographical distribution of the genes for different groups (if you corrected for recent migrations) could be related to the geographical distribution of the relevant diseases? This would make sense as a factor to preserve a diversity of blood types (in the ABO system) in the global population. (The practice of transfusing blood is too recent to have had any effect on this, of course.) Anyone remember reading something like this? --Anonymous, 05:48 UTC, March 6, 2009.
- I don't remember a specific news item like that. In the disease associations that come to mind, negativity for an antigen is associated with resistance to a disease. This is the case for Duffy antigens (malaria), and A and B antigens (malaria and thrombosis). However, fetal A and B antigens may be protective hemolytic disease of the newborn, because anti-A or anti-B antibodies in an Rh(D) negative mother, who carries a child that is Rh(D) positive and positive for the A or B antigen that the mother lacks, protect against maternal Rh-immunisation. --NorwegianBlue talk 12:34, 6 March 2009 (UTC)
- Moved comment by SDY that was posted in the middle of my reply. --NorwegianBlue talk 09:44, 6 March 2009 (UTC)
- Can't give a definitive reason but the presence of Blood type (non-human) amongst numerous animals and its persistence from the apes to us indicates having blood groups must have a strong evolutionary advantage. Dmcq (talk)
Malaria: Worst. Disease. Ever?
Hi. Is there any truth to the claim that Malaria has killed about half the people who have ever lived??? --Kreachure (talk) 22:35, 5 March 2009 (UTC)
- I very much doubt it. The estimates for the total number of people who have ever lived is all over the map - but 100 billion isn't a bad guesstimate. There are between 6 and 7 billion people alive today - and about half of the 100 billion are estimated to have lived before 1000 AD. This means that in order for this to be true - a CONSIDERABLE fraction of those deaths must have happened long before consistent records were kept - and VERY long before the diagnosis of diseases was good enough to be reliable. We know that half of the people who ever lived can't have died of malaria SINCE 1000 AD because for that to be true, we'd all have to be dead. List of causes of death by rate lists malaria as causing around 2% of deaths worldwide in 2005. So clearly the death rate from malaria would have had to be not just 50% in more ancient times - but VASTLY more than 50% in order to compensate for the miserable 2% rate we're seeing these days...but again, we can't be sure of numbers that far back in history because statistics were not kept - and the germ theory of disease didn't exist - so a death from malaria might be attributed to any number of bizarre causes. SteveBaker (talk) 23:31, 5 March 2009 (UTC)
- I wonder (as I have heard this folk-fact before) as to whether it came from somebody saying "The number of people who have ever died as a result of malaria is equal to half the people living today". That would seem consistent with the maths. 2% of 100 billion being 2billion, but 2% being low due to modern anti-malarial drugs, so likely higher in the past. Fribbler (talk) 23:54, 5 March 2009 (UTC)
- Sounds quite plausible. arimareiji (talk) 14:23, 6 March 2009 (UTC)
- That's a possible reason
- I wonder (as I have heard this folk-fact before) as to whether it came from somebody saying "The number of people who have ever died as a result of malaria is equal to half the people living today". That would seem consistent with the maths. 2% of 100 billion being 2billion, but 2% being low due to modern anti-malarial drugs, so likely higher in the past. Fribbler (talk) 23:54, 5 March 2009 (UTC)
Alright, this is rediculous...I have in ten minutes of searching found countless forum discussions, blog postings, websites, and even a national geographic article asserting something along the lines of "some scientists believe that malaria has killed over half the people who have ever lived.] Not a single source I've found gives a citation for this, or ever elaborates on who these "scientists" or sometimes "medical historians" are. I'm starting to wonder if this is one of those factoids that got made up one day and spread around and around...like "humans only use 10% of their brain" (btw, is there a name for "facts" like that?). Someguy1221 (talk) 23:59, 5 March 2009 (UTC)
- Ironically, Wikipedia is blamed for propagating false information due to anonymous contributions. In fact we're all here working our hardest to do due diligence on our facts before stating them; meanwhile, out there is a sea of even more anonymous contributors to tens of millions of random websites - and they typically don't have the same good intentions, focus, and presence of mind to evaluate information and its source. Nimur (talk) 05:56, 6 March 2009 (UTC)
- Viral verbal encephalitis? --Scray (talk) 00:32, 6 March 2009 (UTC)
- Thanks for the laugh. ^_^ arimareiji (talk) 14:23, 6 March 2009 (UTC)
- Check out Common misconceptions. Kreachure (talk) 01:44, 6 March 2009 (UTC)
- Urban legends of course! SteveBaker (talk) 02:13, 6 March 2009 (UTC)
Malaria is bad, bad news, and it wasn't until the modern era that people were able to do much about it. People still die from it because they can't get the basic care to prevent or cure it. That said, half of all people who have ever lived is a rather extreme claim. To say that half of all people who have ever lived had malaria (as opposed to directly dying from it) wouldn't be quite as ridiculous, but even that is extreme. SDY (talk) 01:16, 6 March 2009 (UTC)
- Sure - it's just barely possible that this might be true (although I rather doubt it) - but what is flat out utterly impossible is to KNOW that it's true. Most of the deaths would have to have been so far in the past - that there is no way we could know the cause. SteveBaker (talk) 02:13, 6 March 2009 (UTC)
- We can't even "know" the number of people that currently have it, but there are reasonable ways to estimate it. We can estimate that x percent of people with no effective prevention get malaria in an area and without effective treatment y percent of them die. If we know the percent of those people that lived in areas with similar exposure to malaria, we can apply modern case and fatality rates to create a percent of possible infections. It's an estimate, but so is the number of modern deaths from malaria given that many of the places where it takes place don't have the infrastructure to keep good records. "Cannot know" does not mean "have no clue." SDY (talk) 16:28, 6 March 2009 (UTC)
Malaria is a tropical disease, so the population of temperate regions did not get it. Also, it was not present in South America or Central America, or the Pacific islands, until brought by whites. Thus quite a few humans in those areas were beyond its influence until fairly recently. Population growth in the last couple of centuries has put a great many humans in all tropical regions in danger from it, but that is balanced by population growth in temperate regions. Malaria has, of course, been present in Africa from earliest recorded history. Malaria has also been recorded in Ancient China - but that would have to be only in southern China; the more northerly parts of China would be too cool for it. Being present in southern China, it would also undoubtedly have been present in other parts of SE Asia, and perhaps India. But all-in-all, many humans have not lived in malarial zones, so the 50 percent figure does seem too large. - GlowWorm. —Preceding unsigned comment added by 98.17.34.95 (talk) 04:58, 6 March 2009 (UTC)
- And of course, the native African population (where malaria was at it's worst) had evolved a gene for resistance to malaria - but because having two copies of the gene results in sickle-cell disease - it could not have been present in 100% of the population. SteveBaker (talk) 05:08, 6 March 2009 (UTC)
- Malaria may be a tropical disease but at times the tropics were obviously in civilized places like Rome, too, as at least one pope died of malaria. At least until the 20th century, Sicily was malaria-infested, and it will be the first to become that again, when the climate hits us. --Ayacop (talk) 10:23, 6 March 2009 (UTC)
- Humans are basically a tropical species anyway. There were a lot more people in Egypt than there were in Norway for a large percent of human history.
- While we may describe malaria as a 'tropical' disease, it's historical range has extended to some very non-tropical areas. Malaria was widespread in England, possibly since Roman times, and certainly from the fifteeth century. It was "endemic along the coasts and estuaries of south-east England, the Fenlands, and estuarine and marshland coastal areas of northern England": [10]. It took a combination of quinine antimalarials, the elimination of mosquito breeding areas, and systemic insecticide use to end local transmission of malaria in England.
- Similarly, oh-so-tropical Canada enjoyed its own malaria problems: [11]. Here's a study which looks at endemic malaria in Russia, Finland, and Sweden: [12]. TenOfAllTrades(talk) 16:40, 6 March 2009 (UTC)
Hypertension
What is the reason of hypertension in the patients of Diabetes? —Preceding unsigned comment added by 201.220.215.12 (talk) 23:36, 5 March 2009 (UTC)
- There are a number of reasons why hypertension and diabetes are linked. Anyone suffering from either (or both) condition need to consult health professionals in order to understand and treat their own condition. The two conditions have similar risk factors (relating to age, weight, diet, exercise), but also a number of inter-related conditions. Some common causes include insulin resistance (Metabolic syndrome) in Type II diabetes, and diabetic nephropathy. Various alterations to the vascular cells caused by hyperglycaemia can also contribute. In addition, diabetic sufferers are more prone to developing cardiovascular disease. (Note that high blood pressure is a symptom of, complication of, or contributor to a number of conditions.) Gwinva (talk) 00:38, 6 March 2009 (UTC)
- It is possible that the questioner is wondering why "normal" blood pressure in a non-diabetic is commonly anything less than 140/90 while "normal" blood pressure in a diabetic is anything less than 130/80. These come from many studies that were used to create the JNC7 guidelines (available here). Of note, patients with chronic kidney disease are also considered "normal" with a BP less than 130/80. Also note that I put "normal" in quotes as it isn't actually "normal". Between 120/80 and 140/90 is prehypertensive. Most people just consider anything non-hypertensive as normal and ignore the prehypertensive category. -- kainaw™ 03:57, 6 March 2009 (UTC)
I am very thankful to Gwinva and Kainaw for ur interest. I had an idea that in patients of Diabetes, normal values of preessure are high (my friend asked to me) Iam myself a medical student but I could not get the reason(answer), so I asked u. But I failed to get some conclusion here. Basically I wanted to know the mechanisms that are responsible for the Hypertension in the patients of diabetes. —Preceding unsigned comment added by 201.220.215.12 (talk) 04:31, 6 March 2009 (UTC)
- As Gwinva mentioned, you want Syndrome X; most likely the underlying mechanism is insulin resistance. - Nunh-huh 04:37, 6 March 2009 (UTC)
March 6
Early Lifeforms
Would early lifeforms have used carbon in any way? Shells like those that form chalk? Part of energy source? 99.226.138.202 (talk) 00:26, 6 March 2009 (UTC)
- The earliest life, like all life we know of, would have been built up from amino acids and other molecules involving carbon. Carbon is a key component of all life on Earth and always has been (as far as we're aware). --Tango (talk) 00:31, 6 March 2009 (UTC)
- Following EC:Life on earth is based on organic chemistry. That is based on carbon (scroll down on the page I linked to get to the juicy parts). Even Anaerobic organisms fall into that category. So, on a very basic level lifeforms as we know them are based on carbon. 76.97.245.5 (talk) 00:34, 6 March 2009 (UTC)
Right! Sorry for my stupidity. Carbon-based life forms, of course. 99.226.138.202 (talk) 02:25, 6 March 2009 (UTC)
- All lifeforms on earth are carbon based.--Apollonius 1236 (talk) 15:57, 7 March 2009 (UTC)
- As mentioned above, the earliest life did not have shells - those are actually a fairly late-stage arrival after some billion or so years of proto-life and prokaryotic monerans. Nimur (talk) 06:00, 6 March 2009 (UTC)
- Asking stupid questions doesn't make you stupid - quite the opposite, in fact. Had you not asked, you would have continued to be ignorant, now you know. --Tango (talk) 10:31, 6 March 2009 (UTC)
- There are no stupid questions. There are questions that beg for stupid answers*, but the above was certainly not one of them. ^_^ Like Tango said... a question that results in a gain of knowledge is always for the good.
- * - Example: "Please explain your opponent's ideological viewpoint in a quick sound bite." arimareiji (talk) 14:13, 6 March 2009 (UTC)
Carbon again
Can graphite go through pyrolysis to become coal? 99.226.138.202 (talk) 02:26, 6 March 2009 (UTC)
- I don't think so, but it can apparently get you nanotubes and fullerenes under the right conditions. [13] Someguy1221 (talk) 02:53, 6 March 2009 (UTC)
- The name would suggest you might get this Pyrolytic carbon instead. It might depend on what process you are using. Things like pressure, time, temperature etc. can determine what carbon compounds you end up with. For practical applications things like having to wait for a couple of million years or requiring solar surface temperatures might limit your answers.76.97.245.5 (talk) 04:10, 6 March 2009 (UTC)
- What? Coal is graphite. --Pykk (talk) 09:24, 6 March 2009 (UTC)
- More like graphite is coal (technically). See Coal. Someguy1221 (talk) 09:32, 6 March 2009 (UTC)
- Or even graphite "Graphite may be considered the highest grade of coal, just above anthracite and alternatively called meta-anthracite, although it is not normally used as fuel because it is hard to ignite"
- More like graphite is coal (technically). See Coal. Someguy1221 (talk) 09:32, 6 March 2009 (UTC)
No, it's the other way round - coal can undergo pyrolsis to become graphite (or more often coke). FengRail (talk) 10:51, 6 March 2009 (UTC)
science joke
I don't get it. Can someone explain? The caption says "Science joke. You should probably just move along." Thanks, flaminglawyer 05:10, 6 March 2009 (UTC)
- It is a joke based on Kepler's laws of planetary motion, specifically the second law which states "A line joining a planet and the sun sweeps out equal areas during equal intervals of time." - EronTalk 05:18, 6 March 2009 (UTC)
- XKCD often deals with math and science in its punch lines, and fans often don't understand them. If you have access to LiveJournal there is always some sort of discussion (if you can find it among all the other spam) about the interpretation of the joke. 219.102.220.90 (talk) 02:59, 10 March 2009 (UTC)
Atomic Absorption Spectroscopy
If you're trying to analyze the quantity of iron in some milk, you'd measure the 'absorbance' of the milk at different known concentrations and then plot a line graph. Why is it that milk with no iron concentration registers a small absorbance? Is it a problem with the light source (ie not pure iron), or is a tiny fraction of light not hitting the solution or not being converted? —Preceding unsigned comment added by 124.191.112.219 (talk) 11:02, 6 March 2009 (UTC)
- If the atomic absorption spectroscopy shows a small amount of iron, why do you think there isn't any ? (I ask because, whatever other method you used that shows no iron, that might be the method giving the wrong answer.) StuRat (talk) 14:04, 6 March 2009 (UTC)
I don't understand what you mean. If we prepared a solution of milk and we knew for sure that there was no iron in it, and we shone a cathode light made of iron onto it and it still picked up a small absorbance, why is this? —Preceding unsigned comment added by 124.191.112.219 (talk) 09:04, 7 March 2009 (UTC)
- I am questioning your assumption that "we knew for sure that there was no iron in it". Iron is very common, and I would expect some contamination (perhaps down in the parts per trillion range) in pretty much everything. A specific mechanism is blood (which contains iron in hemoglobin) in the milk. If you're talking about cow's milk bought at a grocery store, they mix the milk from thousands of cows together at the dairy. Therefore, getting one drop of cow's blood in all that seems almost inevitable. StuRat (talk) 14:21, 7 March 2009 (UTC)
- Even air will "absorb" (diffract) a tiny fraction of any given wavelength, let alone milk. For more on the complications inherent in measurement, see absorption spectroscopy. Particularly, take note of how many precautions are needed to make sure that the materials used in the cuvette and/or sample preparation are transparent to light of the specific wavelength the spectrometer uses, and think about whether the proteins and lipids in the milk will be just as transparent, given that they're not transparent in the visible light spectrum. I can't really go farther than that without doing your lab report for you. ^_^ arimareiji (talk) 15:10, 7 March 2009 (UTC)
Unsure...?
- Could also be Cumulonimbus cloud it looks pretty dark underneath. I wouldn't be able to tell that from a Cumulus congestus cloud though. Do you know what weather pattern this cloud went with? Did you get a Thunderstorm or rain or was it fair weather? 76.97.245.5 (talk) 14:18, 6 March 2009 (UTC)
It was a fair day, lots of sunshine, and breezy. It didn't rain until the next day...which was pretty unfortunate after having such a pretty day. Papercutbiology♫ (talk) 15:05, 6 March 2009 (UTC)
- That would point towards cumulus, then. 76.97.245.5 (talk) 16:41, 6 March 2009 (UTC)
- The difference between Cumulus and Cumulonimbus clouds (AKA "Thunderheads") is usually the vertical stack and anvil head on the cumulonimbus clouds. Of course, cumulus clouds may devlop into cumulonimbus type clouds given sufficient lift, and there are likely transitional forms between the two. I am sure there is room for interpretation between the two, but generally I think of Cumulonimbus clouds as more vertical, and cumulus clouds as more horizontal or poofy-rounded. Also, as cumulus clouds tend to be fair weather clouds, it is often clear beneath them. With cumulonimbus clouds, there is often visible virga below them (i.e. streaks of rain) which can be observed from a distance. --Jayron32.talk.contribs 19:23, 6 March 2009 (UTC)
- Yeah - it's not a Cu.Nim - those have a classic "Anvil" shape - kinda like a mushroom cloud after a big explosion! The big rounded cloud in the photo is a cumulus. There are higher altitude, whispy clouds there that are cirrus or maybe cirrostratus (depending on altitude). Pf course these kinds of descriptions are not hard-and-fast - there are all sorts of in-between possibilities. SteveBaker (talk) 20:47, 6 March 2009 (UTC)
- These clouds are far too flat to be cumulonimbus. I think cumulus clouds are present near the centre of the image. On Wikipedia Commons, where I have previously categorised many cloud pictures, I would put that image under the categories Cumulus clouds and Stratocumulus clouds (the flatness of the clouds, fractus-like in some areas, and forming a layer-like structure in the distance hint at this). ~AH1(TCU) 00:36, 8 March 2009 (UTC)
Writing on batteries
Because I use my digital camera frequently (see Commons:Category:Files by User:Nyttend), I have four pairs of Energizer AA rechargeable batteries: one for the camera, one as spares to carry in the camera bag, and two more to replace those when I'm charging pairs 1 and 2. I'm considering writing numbers on the sides of the batteries, so that I don't put used batteries in the camera and recharge the fully-charged ones by accident just before I go somewhere. Would this be safe? I plan to use a rollerball pen, although since I've not tried writing on them, I don't know if the ink will hold. Nyttend (talk) 16:01, 6 March 2009 (UTC)
- I don't think a rollerball pen will get the job done; I would think magic marker is more what you need - the permanent kind, not the water soluble. Neither would be dangerous. - Nunh-huh 16:14, 6 March 2009 (UTC)
- I suspect that the ink will hold poorly, but your mileage will vary. (Depending on what else you carry in your camera bag, you may also risk transferring pigment to something valuable.) Whether the ink adheres well or not, the batteries won't be harmed. Per Nunh-huh, a felt-tip permanent marker (Sharpie brand, perhaps) might work better, though even that stuff wears off smooth surfaces if abused.
- You might consider the use of a little bit of colored nail polish to identify each battery. (Use different colors or different numbers of dots; I wouldn't try to write out the numerals themselves.) Sally Hansen Hard As Nails polish is reliably durable. (I don't wear it, but I use it in the lab.) TenOfAllTrades(talk) 16:23, 6 March 2009 (UTC)
- I'm picturing a dozen rats with exquisite pedicures.... - Nunh-huh 16:26, 6 March 2009 (UTC)
- Ha! Sadly, my purpose is much more prosaic. Usually it's to secure and seal glass coverslips on microscope slides. It makes a reasonably hard, waterproof seal. I've always bought the clear stuff though I've considered acquiring different colors to make slides easy to distinguish under conditions of low light and barely-legible handwriting. (Experimental samples will be tagged in Seductive Scarlet, while controls can use Sultry Shamrock.) TenOfAllTrades(talk) 17:21, 6 March 2009 (UTC)
- (off topic) As an example of US laboratory health and safety guidelines running amok, when I was in lab they used to make us put "not for human use" on the nail polish we used for sealing slides. I think at one point they even wanted us to get a material safety data sheet for it! --- Medical geneticist (talk) 23:42, 6 March 2009 (UTC)
- Ha! Sadly, my purpose is much more prosaic. Usually it's to secure and seal glass coverslips on microscope slides. It makes a reasonably hard, waterproof seal. I've always bought the clear stuff though I've considered acquiring different colors to make slides easy to distinguish under conditions of low light and barely-legible handwriting. (Experimental samples will be tagged in Seductive Scarlet, while controls can use Sultry Shamrock.) TenOfAllTrades(talk) 17:21, 6 March 2009 (UTC)
- EC: A Paint marker would work best. In the US they most commonly come in metallic gold. In car part or art supply stores you might find other colors. Also see what you local office supply box has to offer. Shake well before use and make sure to let the paint dry before you use/touch the batteries. 76.97.245.5 (talk) 16:29, 6 March 2009 (UTC)
- I'm picturing a dozen rats with exquisite pedicures.... - Nunh-huh 16:26, 6 March 2009 (UTC)
A Sharpie (marker) should get the job done. They have a fairly fine point, and are permanent, and write on most surfaces. Edison (talk) 18:43, 6 March 2009 (UTC)
- I wrap mine with a strip of electrical tape. SteveBaker (talk) 20:16, 6 March 2009 (UTC)
- Of all the good suggestions above, I think the nail polish would be best. I'd also be careful to apply it to a surface where it would not be scraped during battery insertion and removal. For rectangular batteries, the side that faces out. For cylindrical batteries, the area surrounding the positive knob. Any debris that flakes or scrapes off and gets inside the camera could ruin it if it works its way into the optics. -- Tcncv (talk) 01:01, 7 March 2009 (UTC)
- All these battery marking schemes are not that helpful because you still have to remember which batteries are charged and which are discharged. I use battery cases with 4 little slots that hold the cells (you can get them from places like thomas-distributing dot com). I put charged cells into the cases with the positive end facing upwards, and discharged cells with the positive end facing downward. By the way, that brand of rechargeable cells that you mentioned is terrible. They often crap out after just a few charges. You are better off getting pre-charged cells (available in various brands). Their main feature is near-elimination of self-discharge (that's how they are able to hold a charge while sitting on a store shelf). They sacrifice some capacity to gain that, but it makes them much more reliable. 207.241.239.70 (talk) 06:06, 7 March 2009 (UTC)
How does VIH resist reverse transcriptase inhibitors?
I've read in the VIH article that this this virus is treated with reverse transcriptase inhibitors. But the article does not explain how the virus can continue to reproduce (and therefore, why isn't AIDS treatable). Can someone help? Thanks. —Preceding unsigned comment added by 88.1.136.110 (talk) 16:54, 6 March 2009 (UTC)
- Do you mean the HIV article? On English Wikipedia, VIH redirects to an airport. Nimur (talk) 17:43, 6 March 2009 (UTC)
- (ec) HIV/AIDS is quite treatable; treatment of HIV is highly effective - for example, there are no special limits on the lifespan of people who have access to care and have not developed resistance to antiretroviral drugs. Resistance is just one of the limitations of antiretroviral therapy. The articles I've linked can answer many questions. If you don't find what you need, please be more specific. --Scray (talk) 17:47, 6 March 2009 (UTC)
- Reverse transcriptase is blocked by either competitive or non-competitive inhibitors (see reverse transcriptase inhibitors). It's kind of trivial that a structural alteration could make an RT resistant to the non-competitive inhibitor, but not so much how a mutation could make it resistant to the "primer blocking" effects of the competitive inhibitors (many of which, as the article describes, act like ddNTPs). "K65R: a multi-nucleoside resistance mutation of low but increasing frequency" Antiviral Therapy (2003) is supposed to describe how this works, but either the publisher's webiste (or my library's) is having some funkiness right now and I can't actually access it. Someguy1221 (talk) 23:47, 6 March 2009 (UTC)
"Reverse transcriptase is blocked by either competitive or non-competitive inhibitors."
- Reverse transcriptase is blocked by either competitive or non-competitive inhibitors (see reverse transcriptase inhibitors). It's kind of trivial that a structural alteration could make an RT resistant to the non-competitive inhibitor, but not so much how a mutation could make it resistant to the "primer blocking" effects of the competitive inhibitors (many of which, as the article describes, act like ddNTPs). "K65R: a multi-nucleoside resistance mutation of low but increasing frequency" Antiviral Therapy (2003) is supposed to describe how this works, but either the publisher's webiste (or my library's) is having some funkiness right now and I can't actually access it. Someguy1221 (talk) 23:47, 6 March 2009 (UTC)
That's not correct. The terms "competitive" and "non-competitive" apply to inhibitors of receptors (i.e. receptor antagonists), not enzyme inhibitors. Axl ¤ [Talk] 08:50, 9 March 2009 (UTC)
- If you're right, then you might want to tell the editors of Antiviral Research,[14] The Biochemical Journal,[15],[16] and the Biological & Pharmaceutical Bulletin.[17]. Those are just some of the many I found in a quick look for non-competitive HIV RT inhibitors. Is it possible the usage is a little broader? --Scray (talk) 09:43, 9 March 2009 (UTC)
- Thanks for pointing that out. You're quite right, Scray. Axl ¤ [Talk] 12:08, 9 March 2009 (UTC)
Clean coal...for real?
I was reading our coal article - in the vain hope of being able to contribute to our earlier question about the stuff...or at least to learn something for the next time a coal question comes up.
What I read in the article is that the principle ingredients of coal are carbon (well, duh) - and hydrogen. We know that burning the carbon is pretty disasterous for global warming - and even the 'carbon sequestration' tricks the 'clean coal' advocates propose don't look particularly promising. But I wonder if there is any possibility that a true "clean coal" technology could be devised that would extract the hydrogen out of the coal without burning it and making all that nasty CO2 - leaving a pile of purer carbon behind and then using the resulting hydrogen (for example) to power our cars? Obviously the energy you'd get out would be less than if you burned the coal - but it would be a very clean technology - and there is an AWFUL lot of coal down there. I wonder if it would still be economic? I also wondering whether there might be a possible means to extract the hydrogen from a coal seam without digging the stuff up? (Maybe pump something heavier like CO2 down there under pressure?)
Does anyone understand how the hydrogen is bound up in the coal well enough to explain this? (I'm not a chemist - so I need baby-talk for that bit!)
SteveBaker (talk) 22:47, 6 March 2009 (UTC)
- The United States Department of Energy has spent millions of dollars on this specific project. See an itemization of over $7million handed out in 2006 here. There are two main issues. First, the hydrogen must be separated. It becomes crude hydrogen because it is mixed with a lot of garbage. Then, it must be refined into quality hydrogen. If you look at the projects involved in the 2006 grants, you will see the same thing over and over - research into refining or purifying crude hydrogen. That appears, from what I see, to be the problem. If you burn crude hydrogen, you will be sending all the pollutants in the crude hydrogen into the atmosphere just like burning coal. -- kainaw™ 22:58, 6 March 2009 (UTC)
- Well, that led to this that explains exactly how it is done. -- kainaw™ 23:00, 6 March 2009 (UTC)
- No - that's the pathway that Arimareiji discusses below - it's still reacting the carbon (in this case with water) and producing CO2 along with hydrogen from the water. I'm asking about whether the hydrogen that's already in the coal can be extracted LEAVING THE CARBON BEHIND. SteveBaker (talk) 02:34, 7 March 2009 (UTC)
- Coal, to my knowledge, is more-or-less pure carbon. No appreciable hydrogen in it. Burning it directly gives carbon dioxide, CO2. Hydrogen can be generated if you react that carbon with steam to form synthesis gas (C + H2O -> CO + H2) to serve as fuel. You can further react the CO (carbon monoxide) to get more hydrogen, producing CO2. (CO + H2O -> CO2 + H2) You could see this as analogous to charging a battery - instead of high-energy coal, you now have high-energy hydrogen.
- But there's no free lunch. To put it in overly simplistic terms, carbon is high-energy and carbon dioxide is low-energy. You only get the energy difference out of carbon if you turn it to carbon dioxide, regardless of whether you burn it directly or react it to form hydrogen. arimareiji (talk) 23:56, 6 March 2009 (UTC)
- @Arimareiji : Yeah - I thought that too - but just go and read our article: coal - there is in fact quite a bit of hydrogen locked up in coal. Hence the question! SteveBaker (talk) 00:55, 7 March 2009 (UTC)
- Being 7 months behind in my reading may have paid off, I just read something about this in Nature. Coal can be gasified underground by drilling a well; setting it on fire and adding oxygen; then removing the resulting gas from an adjacent well. The product is synthesis gas (H2+CO) and CO2 which can be used to make all the things syngas is already used for in refineries (diesel oil in this case). This is essentially the same thing as coking, which drives almost everything but the carbon out of coal for use in iron smelting - but in reverse, it leaves much of the carbon in the ground. However, if the output carbon is not sequestered, the process produces twice the amount of greenhouse gas as the straight-out petroleum product. That seems to be the best available technology. Steve, I'll mail you the article and anyone else who wants a copy, drop me a line. Franamax (talk) 02:41, 7 March 2009 (UTC)
- Someone could actually get a grant for this now? DMacks (talk) 03:44, 7 March 2009 (UTC)
- Being 7 months behind in my reading may have paid off, I just read something about this in Nature. Coal can be gasified underground by drilling a well; setting it on fire and adding oxygen; then removing the resulting gas from an adjacent well. The product is synthesis gas (H2+CO) and CO2 which can be used to make all the things syngas is already used for in refineries (diesel oil in this case). This is essentially the same thing as coking, which drives almost everything but the carbon out of coal for use in iron smelting - but in reverse, it leaves much of the carbon in the ground. However, if the output carbon is not sequestered, the process produces twice the amount of greenhouse gas as the straight-out petroleum product. That seems to be the best available technology. Steve, I'll mail you the article and anyone else who wants a copy, drop me a line. Franamax (talk) 02:41, 7 March 2009 (UTC)
- @Arimareiji : Yeah - I thought that too - but just go and read our article: coal - there is in fact quite a bit of hydrogen locked up in coal. Hence the question! SteveBaker (talk) 00:55, 7 March 2009 (UTC)
- Again, this is a lot messier than what I was hoping to hear. The hope would be to NOT generate any CO2 and just get at the hydrogen...but it's certainly beginning to sound like it's not possible. Oh well - it was worth a try! SteveBaker (talk) 03:43, 7 March 2009 (UTC)
- SteveBaker - from [18], "Carbon, by far the major component of coal, is the principal source of heat, generating about 14,500 British thermal units (Btu) per pound. The typical carbon content for coal (dry basis) ranges from more than 60 percent for lignite to more than 80 percent for anthracite. Although hydrogen generates about 62,000 Btu per pound, it accounts for only 5 percent or less of coal and not all of this is available for heat because part of the hydrogen combines with oxygen to form water vapor."
- Franamax - setting coal on fire underground is a very very bad idea; look up the fate of Centralia, PA. Gasification is a sharply different process. arimareiji (talk) 03:51, 7 March 2009 (UTC)
March 7
My penis is multicoloured (this is not a joke or vandalism)
Seriously. My penis is a mixture of Olive skin and my regular skin colour, which fits between type II and type III in this because I have dark brown hair and dark blue eyes. Seriously, my penis is multicoloured in random patches. This is not a joke. Is this normal? Not that any girls have ever complained about it, but I have some cousins on my father's side whom I've noticed actually have more olive coloured skin than myself. Weird that.--Get 'Em Out By Friday (talk) 00:08, 7 March 2009 (UTC)
- Could it be the result of circumcision, which can leave darker skin closer to the base? arimareiji (talk) 00:14, 7 March 2009 (UTC)
- Not circumcised.--Get 'Em Out By Friday (talk) 00:31, 7 March 2009 (UTC)
- If you feel you have some medical condition that needs attention, see a doctor. It you simply want to know if anyone else has a penis that has more than one skin tone - yes. It occurs in other men. -- kainaw™ 01:17, 7 March 2009 (UTC)
- From my corrupt youth, I remember that the character nicknamed "Pinto" in the movie Animal House got his nickname from having the same condition. 207.241.239.70 (talk) 06:08, 7 March 2009 (UTC)
- However, in the original National Lampoon story, Pinto got the discoloration on his penis because he'd gotten tar on it, possibly while masturbating. --LarryMac | Talk 13:49, 9 March 2009 (UTC)
Is the Yangtze River drying up?
In the Ganges River Article, it states that the Ganges River may dry up in 2030 because of receding Himalayas glaciers. Is the Yangtze River in China going to dry up too? When will the Yangtze River completely dry up? Sonic99 (talk) 04:53, 7 March 2009 (UTC)
- A government official claims in China Daily the recent drying is due ot lack of rainfall and climate change is blamed. Elsewhere, human activity such as damming are blamed for the Yangtze's tributaries running dry. Glacier melting has been suggested as future problem for the Yangtze but it is not actually happening yet and it is expected that melting glaciers will first cause flooding before causing drying as they run out of material to melt. SpinningSpark 11:54, 7 March 2009 (UTC)
- No, the last part is wrong. Glaciers primarily melt in high summer, when water levels are naturally low. Floods typically occur in spring, when seasonal snow melt occurs. So melting glaciers will increase average flow level (all other things being equal), but not usually cause floods. --Stephan Schulz (talk) 12:11, 7 March 2009 (UTC)
- That's not what the source says, to quote;
- "The rapid melting of Himalayan glaciers will first increase the volume of water in rivers causing widespread flooding," said Jennifer Morgan, director of the WWF's Global Climate Change Programme. "But in a few decades this situation will change and the water level in rivers will decline, meaning massive economic and environmental problems for people in western China, Nepal and northern India."
- You are confusing the normal annual cycle of melting and the permanent destruction of glaciers due to global warning. The first is in equilibrium, the second is not. SpinningSpark 12:17, 7 March 2009 (UTC)
- No. The long-term reduction of glaciers is overlaid by the seasonal cycle. Even now, most glaciers gain mass in winter. It's just that they lose more of it in summer. If you look at your source (the WWF report here), you will notice that they talk about all areas that are affected by Himalaya glacial run-off, and that that particular piece (increased flooding) applies to the Indian side. There, floods are not primarily resulting from snow melt, but rather are triggered in high summer, when the Monsoon brings massive amounts of precipitation. In that case, seasonal rains and maximum glacier melting coincides. But that does not apply to the Chinese river systems. --Stephan Schulz (talk) 17:24, 7 March 2009 (UTC)
- I'm not sure about the Yangtze, but the Huang River is increasingly experiencing more days without water flow each year, due in part to the desertification around the Gobi Desert and receding Himalaya glaciers, both affected by climate change. The Three Gorges Dam on the Yangtze (Chang Jiang) may be able to control water flow for a period of time, however. I've read that the melting of the Himalayan glaciers will affect the main source of water for over 500 million people. ~AH1(TCU) 00:24, 8 March 2009 (UTC)
- No. The long-term reduction of glaciers is overlaid by the seasonal cycle. Even now, most glaciers gain mass in winter. It's just that they lose more of it in summer. If you look at your source (the WWF report here), you will notice that they talk about all areas that are affected by Himalaya glacial run-off, and that that particular piece (increased flooding) applies to the Indian side. There, floods are not primarily resulting from snow melt, but rather are triggered in high summer, when the Monsoon brings massive amounts of precipitation. In that case, seasonal rains and maximum glacier melting coincides. But that does not apply to the Chinese river systems. --Stephan Schulz (talk) 17:24, 7 March 2009 (UTC)
- That's not what the source says, to quote;
- No, the last part is wrong. Glaciers primarily melt in high summer, when water levels are naturally low. Floods typically occur in spring, when seasonal snow melt occurs. So melting glaciers will increase average flow level (all other things being equal), but not usually cause floods. --Stephan Schulz (talk) 12:11, 7 March 2009 (UTC)
- The WWF report doesn't say when the glaciers and river water will completely disappear in China. It discusses about the glaciers on the Indian side will vanish within 40 years and that isn't a long time from now. The Indian government better do something quick like reducing their population or else they'll be in very deep trouble. Sonic99 (talk) 00:42, 8 March 2009 (UTC)
perpetual motion machine
without thermal energy utilisation is it possible to make PMM? —Preceding unsigned comment added by Gbhavsar (talk • contribs) 08:03, 7 March 2009 (UTC)
- It is not possible to make a perpetual motion machine. Dragons flight (talk) 11:13, 7 March 2009 (UTC)
- I think that the questioner may be asking if a perpetual motion machine would be possible if thermal losses could be completely eliminated. It is not possible to eliminate losses entirely due to the second law of thermodynamics. Speculating on whether perpetual motion machines could exist if the second law did not exist is meaningless and unanswerable. If the impossible were possible it might be possible, but as its impossible, it ain't. SpinningSpark 11:27, 7 March 2009 (UTC)
- A perpetual motion machine isn't just something in perpetual motion (a pendulum on the moon would satisfy that, to within a negligible margin of error), it has to actually do something. That means there aren't just accidental losses, there is intentional extraction of energy. That energy has to come from somewhere. --Tango (talk) 13:48, 7 March 2009 (UTC)
- I'd say a device that does nothing more than stay in motion forever is also a PPM. The pendulum example would eventually slow and stop (although it might take longer than the life of the universe). Even the orbits of the Moon. Earth, and stars would decay eventually. StuRat (talk) 14:02, 7 March 2009 (UTC)
- Our article disagrees with you. --Tango (talk) 14:05, 7 March 2009 (UTC)
- I'd say a device that does nothing more than stay in motion forever is also a PPM. The pendulum example would eventually slow and stop (although it might take longer than the life of the universe). Even the orbits of the Moon. Earth, and stars would decay eventually. StuRat (talk) 14:02, 7 March 2009 (UTC)
- Well, it's just a matter of words - linguistics, not science. When the free energy nuts talk about 'perpetual motion machines' - they are referring to the 'over unity' variety - from which energy could hypothetically be extracted. This 'first' kind of device is definitely - without any doubt whatever - quite utterly impossible. The 'second' kind is the idealised machine which has no friction, no air resistance, and never physically changes (eg it doesn't wear out or anything) - this enables it to be in motion perpetually. The spinning of the earth - the orbiting of the moon - these are all oft-cited examples. Sadly, none of them are that because there are other bodies in the universe causing tidal effects and other gravitational effects, there are tiny TINY amounts of gas and dust in even the hardest inter-galactic vacuum that will eventually cause drag and so forth. So machines of this second kind are acceptable to science as purely theoretical possibilities - although they may not be possible in practice. However, we must be ETERNALLY vigilant. The nut-jobs simply LOVE to cite the existance of "perpetual motion" of the second kind as "proof" that perpetual motion is indeed possible - and therefore they claim to be able to design whack-job "perpetual motion machines" OF THE FIRST KIND to make 'free energy'.
- So there are two problems:
- People confuse machines of the first and second kinds because (stupidly) we use the same words for each.
- People ignore the PRACTICAL problems with the second kind of machine which mean that they do not in fact work PERPETUALLY anyway.
- SteveBaker (talk) 15:26, 7 March 2009 (UTC)
- So there are two problems:
- I'm pretty sure the second kind is theoretically impossible too. If nothing else, anything with any moving parts whatsoever (technically, anything with jerking parts) will emit gravitational radiation and slowly lose energy. — DanielLC 17:08, 7 March 2009 (UTC)
Does electric current count as "motion?" A superconducting magnetic energy storage unit is said to have no decrease in current over time, as long as you keep it chilled and do not intentionally remove energy. Edison (talk) 20:50, 7 March 2009 (UTC)
- Again with the linguistics! Whether we call electric current "motion" or not is irrelevant - what really matters is whether it can indeed go round and round in a superconductor forever without additional energy input. Again, I suspect that in theory it does - and in practice it won't...exactly why it won't in practice, I'm not sure...but I'd bet actual money! SteveBaker (talk) 01:21, 8 March 2009 (UTC)
- you may have to wait a long time to collect though SpinningSpark 03:50, 8 March 2009 (UTC)
- I'm fairly certain it will still generate cyclotron radiation. — DanielLC 05:11, 8 March 2009 (UTC)
- Yes - and since electrons have mass (albeit exceedingly tiny), they must generate their own teeny-tiny gravitational waves...hence, per DanielLC's previous post, they ought to be (s-l-o-w-l-y) losing energy that way too. SteveBaker (talk) 07:55, 8 March 2009 (UTC)
- I would like to point out (for the general reader's sanity benefit) that physicist have a fairly standard definition of PMM of first, second, and third kind and what SteveBaker defines here as second kind is usually defined as third kind while SteveBaker's first kind can be standard first kind or standar second kind, depending on which law of thermodynamis is actually being violated. See perpetual motion#classification. Dauto (talk) 17:40, 9 March 2009 (UTC)
why is there no article about biological (genetic) basis of breeding?
The breeding article is suspiciously silent on the topic. Since Darwin used breeding as an easy to understand example for evolution, this important topic should be covered in wikipedia Northfox (talk) 10:14, 7 March 2009 (UTC)
- Please, be bold and write this article! Lova Falk (talk) 10:24, 7 March 2009 (UTC)
- The breeding article is merely a disambiguation page, that is, an index to other pages. You might want to look at breed and selective breeding (which specifically refers to Darwin) and several other of the linked articles. SpinningSpark 11:19, 7 March 2009 (UTC)
- thanks for the articles, SpinningSpark. But I find that they are somewhat contradictory.
- Selective breeding says:
- Charles Darwin discussed how selective breeding had been successful in producing change over time in his book, Origin of Species. The first chapter of the book discusses selective breeding and domestication of such animals as pigeons, dogs and cattle. Selective breeding was used by Darwin as a springboard to introduce the theory of natural selection, and to support it.
- breed says:
- Thus, all specimens of the same breed carry several genetic characteristics of the original foundation animal(s).
- The first is often used as evidence for evolution (the breeder just 'speeds up' nature, eventually leading to new species), while the second one states that the bred animal contains just a subgroup of the wild gene pool. This is just my little WP:OR, so I thought that there would me a more fundamental, well referenced article. Well writing it myself is easier said than done. There are some editors that allow no tainting of their beloved theory and its icons. Been there, done that. Northfox (talk) 12:45, 7 March 2009 (UTC)
- That's not contradictory. There are two stages in selective breeding, first you breed for the characteristics you want and then you breed to keep those characteristics. The first stage is, essentially, accelerated evolution, the second stage is more of an attempt to prevent evolution. --Tango (talk) 13:51, 7 March 2009 (UTC)
- While artificial selection (which, when done intentionally, is called "breeding") is a good analogy to natural selection, it doesn't do anything to "speed up" mutations, which are another important element in evolution. Thus, you can't rapidly create a new species by breeding alone, since you still would need to wait thousands or millions of years for the mutations to occur which you could then select to breed a new species. I suppose you could speed this up by exposing the organisms to mutagens, but that would also make a large portion of them get sick and die. Genetic engineering offers a more practical way to introduce selected "mutations". StuRat (talk) 13:50, 7 March 2009 (UTC)
- Your timescale is way off, StuRat. There are plenty of mutations that occur with every single generation. You certainly wouldn't have to wait thousands or millions of years to get enough of them for speciation if you have the right selection criteria. In the lab, artificial species have been derived with selective pressure across as few as 8 to 40 generations from a last common ancestor. In flies, that is around 3 months to a year. Rockpocket 22:20, 7 March 2009 (UTC)
- I don't think the term "breeding" is normally applied to flies, but rather to larger animals with much longer lifespans (either pets or work/food animals). Therefore, the time for a new species to arise would be much longer. I'd be interested to see any source you have showing a new species of pets or work/food animals created from breeding alone, in fewer than 1000 years. StuRat (talk) 00:16, 10 March 2009 (UTC)
- There is an argument that over time, selective breeding is just a variation on natural selection. Animals and plants are effectively evolving to exploit a niche where they are symbiotic with humans. In primitive societies, dogs which are good with children are more likely to be looked after, fed, exercised and ultimately to have puppies. There is an evolutionary pressure to be good with children. SteveBaker (talk) 15:04, 7 March 2009 (UTC)
- Alternately, look at human preferences in breeding amongst themselves to see the same pattern. That which we consider "attractive" (symmetric face, symmetric body, good stature, and wide hips among other factors) tends to coincide with having "good genes" for breeding and/or reproduction. Quick thought experiment: Imagine breeding with one of the people pictured here. Now imagine breeding with someone with obvious deformities, or signs of Down syndrome, by comparison. Whether or not this is fair, it's how we're programmed. arimareiji (talk) 15:33, 7 March 2009 (UTC)
(**Removed links and ambiguous commentary with respect to photographs of real people.) If you wish to illustrate "breeding" examples with real people, you should have their permission for the use in this context. And you should make your point clearly and unamibigously. // BL \\ (talk) 16:17, 7 March 2009 (UTC))Comment now makes no sense as text and links I removed have been reinserted. See the discussion at Ref desk on my talk page. // BL \\ (talk) 17:25, 7 March 2009 (UTC
- One thing has always puzzled me. Why is it that pure-bred animals do not breed entirely true unless the parent animals are specially selected as best-of-the-breed? If two average pure-bred animals reproduce, the offspring have worse breed characteristics than the parents. After two or three generations of this, the offspring become quite nondescript. I think the same is true of genetically-engineered plants. How does this relate to evolution? – GlowWorm.
- Our article Purebred says: A puppy from two purebred dogs of the same breed, for example, will exhibit the traits of its parents, and not the traits of all breeds in the subject breed's ancestry. That would seem to contradict your statements that purebreds don't "breed true". // BL \\ (talk) 19:18, 7 March 2009 (UTC)
- Purebreds are usually so inbred that I would expect they are homozygous for pretty much all genes relevant to the definition of the breed, so offspring would have those same characteristics. It is, however, possible to have an animal that has all those same characteristics, but is heterozygous in those genes that are relevant and where the desired characteristic is dominant (you have to fudge it slightly for those characteristics not determined by a single gene, which is probably most of them!). If two such animals bred then, assuming (completely unrealistically, for the sake of easy calculations) the breed is defined by a single gene, they would have 75% offspring of the same breed and 25% not (for genuine breeds, it will be far more complicated, but the general idea is the same). --Tango (talk) 19:28, 7 March 2009 (UTC)
- Yes that's basically it as I understand it. In certain types of breeding, like chickens for food, the grandparents are actually more valuable than the parents: you set it up so that a grandparent breeds a parent who can breed chickens to be eaten of a consistent type. The chickens to be eaten do not breed true and thus can't be parents themselves. Thus the breeder maintains the intellectual property by keeping the grandparent types under lock and key, selling off parents who can create the chickens that are actually eaten. So the business model works—breeders sell producers to chicken farmers, who take the produced chickens and sell them as food. After awhile, they need new producers, and are forced, by the genetics of it, to get them from the breeder again, as they cannot create producers with the genetic stock on hand. (What blows my mind is that they were able to work this out with just a little knowledge of Mendelian ratios in the 1920s and 1930s and a lot of trial and error.) --98.217.14.211 (talk) 20:46, 7 March 2009 (UTC)
- "True breeding" is an entirely artificial, subjective concept. If two stud animals were entirely homozygous for the same alleles at every locus, their offspring will (the vast majority of the time) be exactly the same as them, phenotypically speaking. If you define these two animals as "best of the breed" then most of the offspring would also be also be "best of the breed". In reality, the stud animals will not be homozygous at every locus, and so only a proportion of the "best" alleles will be passed on, and offspring will be genetically "inferior" to the artificial standard. However, its also possible that the offspring could have a "better" assortment, in that it got the "best" alleles from both parents and none of the inferior ones. This explains why (in any species that is artificially bred) the cost of the offspring from two best in breeds are so high. It increases you chances of getting an even better specimen, but more often that not all you do is dilute out the genetic combination that makes the two parents so special and you get a good, but not as good, assortment. Rockpocket 21:53, 7 March 2009 (UTC)
- In evolution, perhaps the maintenance of a "good bloodline" works like this. If there is an environmental change, the particular members of a species that, by chance variation, are best suited to survive, will live longer and produce more offspring than those members not as well suited to the change. Assuming the environment then ceases its alteration (for simplicity), in each generation of the species there will be an automatic selection of the best-of-the-breed. Those best able to survive will gradually prevail until all members of the species are "best-of-the-breed" in the characteristic(s) suited to the changed environment.
- The environmental change could be a climate change, the entry of a new predator, parasite, or disease, or some other adverse change. Or an indigenous predator, parasite, or disease may adapt to a new prey - the subject species. If the environment changes more rapidly than any members of the species can adapt, the species will become extinct.
- In human-produced pedigree animals or plants, the "best-of-the-breed" must be re-selected by humans each generation. There is no automatic selection by the environment.
- In natural selection, those members of a species best suited to survive might have only a slightly better longevity, and consequential generational relative increase in numbers, over other members of their species. But in the course of thousands of generations, those best suited will eventually be the only ones in existence. I once saw some figures on that. It was assumed that those best suited to survive had only a very slight advantage, say a 0.1% increase in numbers over the others, in each generation. Over a sufficient number of generations, the ones best suited would be the only ones to finally survive. The rest would die out, getting down to the last one to die. But a thousand generations is not long in evolution - in humans it is only about 25,000 years. So some of the tiny minor variations between members of a species can be extremely important in time.
- Of course, many things in the environment are changing all the time, Some members of a species may be better suited to one change, and other members of the same species may be better suited to another change. That greatly complicates the matter. But I think the basic principle, and the difference between human selection and natural selection, is as described above. Human selection will produce permanent change only if it is continued for a great many generations, using selected "best-of-the-breed" specimens to produce each new generation.
- I don't know where genetic engineering would fit in this. Perhaps the genetically engineered species should just be considered a separate species. – GlowWorm.
One thing I would add to the above. A slight variation that increases survivability would have to be inheritable. It was not inherited to begin with, so, like the rest of this hypothesis, further thought and practical investigation is needed. – GlowWorm.
- Ah - the inevitable post from our closet creationist! Indeed, for the beneficial variation to be passed on, it has to be genetically based and therefore inheritable. But then you make the dangerous leap of saying "If was not inherited to begin with..." - but why would you think that is not the case? Well, there are two possibilities here: Firstly that it IS inherited - but that it requires a combination of genes from mother and father that have simply not come together before. Secondly, the variation might indeed not have been inherited in the sense of coming directly from the genes that made mother and father what they were - but instead be a random mutation caused by a copying error in the DNA replication that made sperm or egg - or a mutation caused by some kind of mutagen such as environmental chemicals, radiation, etc - or perhaps as a result of viral DNA segments being inserted into the DNA just prior to copying. So your last sentence doesn't really hang together. We know the reasons why there is variation over time and how those changes get preserved over the generations. We're not discussing the source of the variation - but rather the reasons for those particular variations to be selected (ie either artificially or naturally or some odd hybrid of the two). SteveBaker (talk) 07:51, 8 March 2009 (UTC)
- Assuming a wife is faithful to her husband, and excluding identical twins,why are siblings not exactly alike except for differences due to age and gender? I am sure science has provided no proven reason for this. I don't like to see a dogmatic stand taken on an unproven hypothesis. But regardless of the reason for the variation, some of the differences will have an affect on survivability, however slight. – GlowWorm.
- I am sure science has provided no proven reason for this. I am astonished that you could be so ignorant of the work of Watson and Crick, Gregor Mendel and many others. The reason for the differences in siblings has been well established by science to be due to them not having the same DNA. The process of DNA combination between parents is well understood and has been investigated by many working in genetics. It is certainly not an unproven hypothesis. SpinningSpark 10:44, 8 March 2009 (UTC)
- If my senses didn't tell me better, GlowWorm was being sarcastic, or just a wind-up merchant. The concepts of chromosomal crossover and independent assortment are widely taught to 14-16 year olds in school (in the UK at least). Here are a couple of nice simple animations that would be typically shown: [19] [20] --Mark PEA (talk) 11:45, 8 March 2009 (UTC)
- My education in science ended at age 13, except for some later training in electronics in the Air Force. I may not be up on book larnin', but I can take an outsider's view of science. As an earlier poster remarked, education tends to a give tunnel view of the subject learned. Also, well educated persons often take an arrogant attitude about their knowledge of other men's ideas, but they have no original thoughts of their own, not even farther down the tunnel. They are not creative; they are mere memorizers. In a few minutes, I will post on this thread some original ideas of my own about evolution. – GlowWorm.
- 13? How come? --Tango (talk) 22:19, 8 March 2009 (UTC)
- I often feel the same way about professional athletes. All the training makes them so arrogant about their own abilities that it makes it obvious they don't really have those abilities. What good is training, anyway? arimareiji (talk) 22:28, 8 March 2009 (UTC)
- My education in science ended at age 13, except for some later training in electronics in the Air Force. I may not be up on book larnin', but I can take an outsider's view of science. As an earlier poster remarked, education tends to a give tunnel view of the subject learned. Also, well educated persons often take an arrogant attitude about their knowledge of other men's ideas, but they have no original thoughts of their own, not even farther down the tunnel. They are not creative; they are mere memorizers. In a few minutes, I will post on this thread some original ideas of my own about evolution. – GlowWorm.
- (Experts should look away because I'm about to horribly simplify this for the purposes of explanation)
- So let's explain to GlowWorm how come two (non-identical) brothers or sisters end up being different. The DNA in our cells is wound up into 23 separate paired 'chromosomes' comprising tens or even hundreds of thousands of 'genes' - and it's 'genes' that pretty much determine how we're going to turn out. When a cell divides, the DNA is duplicated and hence each cell has an identical copy of all of that stuff. When a mommy and a daddy who love each other very much make a baby - the baby gets 23 chromosome pairs - and a complete set of genes but it's random whether a particular set of genes on those chromosomes comes from the mother or the father.
- So if (say) there is gene for eye color and a gene for hair color is on (I have no idea whether that's true or not...but it'll be something like that) - and if mommy is a blue-eyed blond and daddy is a green-eyed redhead - then in a large family, on average, roughly half of the kids will get that hair color gene from their mother and half will get it from their father...so half of them will have blue eyes, the other half will have green eyes - half will have blond hair and half will have red hair. But that means that there are 4 possible types of kid - blue/blond, green/redhead, blue/redhead and green/blond. (In practice, it's nowhere NEAR as simple as that...but this is the basic mechanism). Now, if there is a third characteristic...sex, for example - then because that too can come from either mommy or daddy - you'll have eight possibilities for the kids: blue/blond/boy, green/red/boy, blue/red/boy, green/blond/boy, blue/blond/girl, green/red/girl, blue/red/girl and green/blond/girl (phew!). Add in the gene for colorblindness - now you have 16 possible children, add in the gene for hating the taste of broccoli and you have 32...you double the number of possibilities for each additional gene you consider. Each characteristic from a separate gene doubles the number of 'types' of kid. So the total number of different children that a pair of unrelated parents might have is 2x2x2x2x2x2x2x2x2x2x2x2x....2x2x2x2x2x2x2x2x2x2x2x2...the number of 2's in that huge number is something like the number of genes. There are 10's of thousands of genes...so two people could have more 'kinds' of child than there are grains of sand on all the beaches of all of the oceans of all of the planets of the galaxy. So it's no surprise that our children turn out differently...unless they are 'identical' because they came from the same fertilised egg and therefore have the same mix of mommy-genes and daddy-genes.
- In truth, that's a horrible over-simplification because (for example) some genes control the 'expression' of others so you might inherit the gene for blue eyes - but the gene for red hair might turn it off and you might get something totally different like brown eyes as a result...and genes are typically inherited in groups - but that's the simple view of why all of the kids of a particular pair of parents come out slightly different...yet all of the kids look like their parents (somewhat) because they picked up all of their genes from one or them.
- I hope this helps. (And now I'm going to get my response shot to hell by the experts!)
Prevailing winds in Israel?
Excuse me - does anyone know anything about the prevailing winds in Israel - in other words, what direction that weather fronts tend to move in there? I've been looking around online, and the best source I could find was this map. It looks like Israel should be just on the edge between the trade winds and the westerlies, but I'm unable to figure out which the region tends to belong to. Can anyone help me out with this? Thanks. --Brasswatchman (talk) 19:21, 7 March 2009 (UTC)
- Given that Israel is on the Mediterranean, and smack in the middle between major continental land masses, I doubt that the idealized global wind map has any value. Winds will be very much dominated by local effects. --Stephan Schulz (talk) 22:41, 7 March 2009 (UTC)
- So I guess there's no real telling, then. Okay. Thank you both very much. --Brasswatchman (talk) 00:53, 8 March 2009 (UTC)
Work done by magnetic fields
It's true that work can never be done on a charged particle that is moving through a magnetic field correct? But a magnetic field can do work on a conductive piece of matter right? ScienceApe (talk) 22:33, 7 March 2009 (UTC)
- I don't know what makes you think that no work is being done on a charged particle moving through a magnetic field. There is a force acting on the charge given by;
- where,
- q is the charge
- v x B is the vector cross product of the charge velocity and the magnetic field flux density
- so clearly work is being done unless the charge is stationary or moving in the same direction as the field. Similarly work is done by a magnetic field on a conductor only if there is current flowing in it and the conductor "cuts" through the magnetic field, that is, moves in a direction not aligned with the field. In this case the force is given by,
- where is the component of field perpendicular to the current.
- SpinningSpark 03:44, 8 March 2009 (UTC)
- Work is force acting through a distance. As your formula shows above, the force is always perpendicular to the particle's velocity. No work is done on the particle by the magnetic field.—eric 03:56, 8 March 2009 (UTC)
- SienceApe, Yes, that's correct (if there is an electry current flowing through the wire), but with a caveat: The work is actually done by the electric field necessary to keep the current flowing. Dauto (talk) 04:11, 8 March 2009 (UTC)
Apart from the work which could be done on a charged particle by a magnetic field, work could be done on the same charged particle by an electric field. Edison (talk) 05:01, 8 March 2009 (UTC)
Species commonly known by binomial name?
I noticed in the article for Boa constrictor it notes that the species' common name is the same as its binomial name, which is unusual. Are there any other species for which this is true? (Other than bacteria, of course.) I'd like to see those for which the common name is the full binomial name, not just the specific name, since the latter is far more common. 99.245.92.47 (talk) 23:16, 7 March 2009 (UTC)
- This is true of Homo habilis and Homo erectus in my experience. Algebraist 23:19, 7 March 2009 (UTC)
- Lots of bacteria are, or at least by abbreviations of the binomial name. E. coli for example, short for Escherichia coli. Lots of species that simply don't have a common name due to not being very common - extinct species, like the ones Algebraist mentions, as a good example of that. --Tango (talk) 23:26, 7 March 2009 (UTC)
- Tyrannosaurus rex, orca (although some call it Killer Whale, orca is becoming more popular). ScienceApe (talk) 00:31, 8 March 2009 (UTC)
- Have you really seen 'Orcinus orca' used as a common name? Algebraist 00:35, 8 March 2009 (UTC)
- I recall seeing the name as Orca orca a long time ago. ScienceApe (talk) 01:57, 8 March 2009 (UTC)
- This is a great question, apart from Boa constrictor I can't think of any extant species that commonly goes by a full binomial name. Rockpocket 01:00, 8 March 2009 (UTC)
- Its pretty weak, but perhaps Pichia pastoris might be another? Rockpocket 01:08, 8 March 2009 (UTC)
- The downside of that one is that it makes the lab smell like feet. Ugh. Saccharomyces cerevisiae smells so much better.... TenOfAllTrades(talk) 01:16, 8 March 2009 (UTC)
- Its pretty weak, but perhaps Pichia pastoris might be another? Rockpocket 01:08, 8 March 2009 (UTC)
- Have you really seen 'Orcinus orca' used as a common name? Algebraist 00:35, 8 March 2009 (UTC)
- I have one! Aloe vera. Rockpocket 01:12, 8 March 2009 (UTC)
- Great question, and this (Aloe vera) is the best response I've seen. --Scray (talk) 03:50, 8 March 2009 (UTC)
- I think T.Rex, E.Coli, Homo Habilis and such are cheating - they just don't have common names - they were named by scientists and the scientific names have stuck. I think Boa Constrictor is actually pretty unusual. SteveBaker (talk) 01:13, 8 March 2009 (UTC)
- Model organisms used in lab work are popular candidates. Since Pichia and E. coli have already been mentioned, let me throw in the nematode C. elegans.
- I'd also be tempted to argue that baker's yeast – Saccharomyces cerevisiae – might be a legitimate candidate. When baker's yeast is used out the real world, most people aren't thinking of it as a living organism — it's just an 'ingredient'. I suspect that when people talk about Saccharomyces as a living creature rather than a kitchen aid, it's more often referred to by its binomial name. TenOfAllTrades(talk) 01:16, 8 March 2009 (UTC)
- Not sure this is as pure and example as the Boa but how about Glis glis aka the Edible Dormouse. In the UK around Tring in Hertfordshire and Buckinghamshire where it has become naturalised following escape from the Rothschilds Estate it is only known by its binomial name. Use Edible Dormouse and you are likely to get blank looks. See [21] Tmol42 (talk) 01:38, 8 March 2009 (UTC)
- Aha ha ha! Classic Daily Mail: "The area contains many highly desirable and expensive properties and some residents even fear their house prices could suffer." :D 79.66.56.21 (talk) 17:15, 8 March 2009 (UTC)
- In the spirit of Aloe vera above, perhaps Ginkgo biloba counts? I seem to recall hearing something about how it improves your memory or some such… I'm not quite sure. – 74 07:15, 8 March 2009 (UTC)
- Does Echinacea count? It's a genus with several species, but at least the binomial name is commonly used. 76.97.245.5 (talk) 08:38, 8 March 2009 (UTC)
- Same for Acacia and Eucalyptus. --Mark PEA (talk) 11:18, 8 March 2009 (UTC)
- And gorilla. --NorwegianBlue talk 11:45, 8 March 2009 (UTC)
- As has been emphasized a few times, the question was about binomial names, therefore these last few don't qualify. Ginkgo biloba does seem like another winner. By my count, that's 3: Boa constrictor, Aloe vera, and Gingko biloba. Did I miss any? --Scray (talk) 16:44, 8 March 2009 (UTC)
- Gorilla sort of counts since the binomial name is Gorilla Gorilla. --Tango (talk) 18:44, 8 March 2009 (UTC)
- As has been emphasized a few times, the question was about binomial names, therefore these last few don't qualify. Ginkgo biloba does seem like another winner. By my count, that's 3: Boa constrictor, Aloe vera, and Gingko biloba. Did I miss any? --Scray (talk) 16:44, 8 March 2009 (UTC)
- And gorilla. --NorwegianBlue talk 11:45, 8 March 2009 (UTC)
- Same for Acacia and Eucalyptus. --Mark PEA (talk) 11:18, 8 March 2009 (UTC)
- Does Echinacea count? It's a genus with several species, but at least the binomial name is commonly used. 76.97.245.5 (talk) 08:38, 8 March 2009 (UTC)
- I'd dispute the Ginkgo. The books all say its common name is the 'maidenhair tree', but even if you discount that, I would argue that its common name is 'ginkgo', not 'ginkgo biloba'. --ColinFine (talk) 19:29, 8 March 2009 (UTC)
- One organism that goes by its binomial name in Norway, is Gyrodactylus salaris (link to various news items). And since model organisms were mentioned above, let's not forget Drosophila melanogaster. --NorwegianBlue talk 19:51, 8 March 2009 (UTC)
- I'd dispute the Ginkgo. The books all say its common name is the 'maidenhair tree', but even if you discount that, I would argue that its common name is 'ginkgo', not 'ginkgo biloba'. --ColinFine (talk) 19:29, 8 March 2009 (UTC)
- D. melanogaster is commonly called a "fruit fly". However, I'd say that Tyrannosaurus rex should qualify. It's a well-known beast and the only way its name is shortened in common use is by reducing the first word to an initial, which is also scentific practice as in E. coli. --Anonymous, 20:27 UTC, March 8, 2009.
- I've never heard the term "maidenhair tree" (131,000 hits on Google), but I see "Ginkgo biloba" all the time (2,290,000 hits on Google). I agree that Tyrannosaurus rex is the common name (but less compelling than some of the others since it's extinct and thus has had less chance than some of the others to have a common name, IMHO). --Scray (talk) 00:08, 9 March 2009 (UTC)
- Agree with scray about Ginkgo biloba vs maidenhair tree. Also Aloe may sometimes be used in place of Aloe vera the same as Boas for Boa constrictor (although both are these may be confusing because they are also frequently used to refer to other members of the group). It's worth remembering that we're only refering to English here. Ginkgo biloba does have a common name in Mandarin and probably other Chinese dialects/languages Nil Einne (talk) 04:34, 9 March 2009 (UTC)
I did say "other than bacteria", since things like E. coli and Staphylococcus aureus seemed too obvious. But thanks for all the suggestions. The count is now Boa constrictor, Tyrannosaurus rex, Aloe vera, Glis glis and Ginkgo biloba? 99.245.92.47 (talk) 02:45, 9 March 2009 (UTC)
- This question has cropped up before here and here. – 74 03:47, 9 March 2009 (UTC)
- Nice pickup, but the current discussion appears to be both more legible and more complete. --Scray (talk) 04:24, 9 March 2009 (UTC)
- The OP seemed to be looking for a definitive answer; I was just establishing some baselines that show we're doing pretty good. – 74 04:43, 9 March 2009 (UTC)
- I thought public logs of #wikipedia were verboten?! *ducks incoming meteor of wrath from Bureaucrats* 99.245.92.47 (talk) 10:17, 9 March 2009 (UTC)
- Nice pickup, but the current discussion appears to be both more legible and more complete. --Scray (talk) 04:24, 9 March 2009 (UTC)
Salvia divinorum Mikmd (talk) 15:20, 11 March 2009 (UTC)
March 8
King Faisal's Dream
Bodies of 2 Sahaba removed from the grave in iraq ,This event held ,when king Faisal see a dream about this .[22] Can any body tell me about facts .How this event was happened .Any thing which we can not explain by every day science about this event. —Preceding unsigned comment added by True path finder (talk • contribs) 01:40, 8 March 2009
- Well, if you follow the links back to the source, you arrive at this: http://www.themajlis.net/Sections-article139-p1.html - which is from some journal called "VOICE of ISLAM" published in South Africa. There appears to be a bunch of articles in every edition - each containing a rather sketchy description of some kind of miraculous Islamic happening (of which there appears to be a very great number). In this case, the entire text is:
- "SHAHEED SAHAABAH
- In 1932, the Sahaabi Hadhrat Huzaifah (radhiyallahu anhu) in a dream instructed king Faisal of Iraq to relocate their graves elsewhere since water from the river was seeping in.
- The king issued orders for the bodies of Hadhrat Huzaifah (radhiyallahu anhu) and Hadhrat Jaabir Bin Abdullah (radhiyallahu anhu) to be exhumed. The exhumation was done in great style and pomp. Thousands of people witnessed the event. When the bodies were removed, it seemed as if they were buried only a couple of hours ago inspite of the lapse of almost 14 centuries. The bodies were fresh and glittering with Noor.Thousands witnessed the exhumation and many non-Muslims who were present embraced Islam."
- "SHAHEED SAHAABAH
- This exact same story (word-for-word) occurs in some other places such as this.
- So what we have here is that in 1932 King Faisal of Iraq claims to have had a dream. OK - there were two kings of Iraq named Faisal. Faisal I of Iraq died in 1933 - Faisal II was born in 1935. So it must have been Faisal I. There is no mention of this miraculous event in our article about him - so we first have to wonder where is the evidence that he claims to have had the dream. We'll never know whether he truly DID have it - because even if we have primary evidence, it's just his claim. There is no scientific evidence that he truly did have the dream.
- Then we are told that as absolute monarch - he demands that some bodies are dug up, with great ceremony - and we're told that the bodies are in surprisingly good condition considering their claimed age. Well, firstly, how do we know that these really were the right bodies? If they'd been there for 14 centuries - then records of their precise burial location would have to be sketchy at best. So if Faisal wanted to do this to make himself seem more self-important, he could EASILY have framed the whole thing. Had two recently deceased men buried at dead of night - then invited an entire crowd to come see them dug up again just hours later. His motives for doing this would have been strong. He was very interested in uniting the people and forwarding a 'pan-arab' agenda - and being told stuff in a dream and then pulling off a miracle could easily be his idea for making that happen! We're told that a ton of people came to watch - so evidently there was HUGE publicity value here. Given that it happened in the very same year as the independence of Iraq - this would not be at all surprising if he faked the whole thing.
- Then there is the issue of whether - even if the event were genuine - did the reporting of the freshness of the bodies get exaggerated in the retellings? Certainly the claims of the intactness of Shaheed martyr's bodies is claimed all over the place (just try Googling the term!) - so this result was certainly expected. Mummification would have been well known in 500 AD when these martyrs are claimed to have been buried - so it's perfectly possible that they were in more reasonable condition than observers might expect - and it's EASY to imagine a simple "Wow! They're amazingly well preserved for a 1400 year old body." to gradually turn into "as if they were buried only a couple of hours ago" after many re-tellings and hype.
- "Noor" is an arabic word meaning "light" - so the bodies were "glittering with light". I'm not sure what that proves - maybe they were still wet from the ingress of river water?
- So that's the range of possibilities. Anything from a 'miracle' to a corrupt politician working the minds of the public to meet his ends of unification to a simple progressive exaggeration of a somewhat surprising - but not earth-shattering event.
- The scientific view is that we don't overturn all of science and suppose a 'miracle' if there is a simpler explanation. I think we have two explanations that are each VASTLY simpler than that some godlike or miraculous event magically preserved bodies and caused a king to have a dream.
- Hence, I have to say to our OP - categorically: No. Science cannot not regard this as anything in any way out of the ordinary - because there are MUCH simpler explanations than those claimed in the "Voice of Islam" article. If a proper, controlled scientific examination of the bodies had been possible - then perhaps some other conclusion might be arrived at - but "Extraordinary claims require extraordinary evidence" - this is most certainly an extraordinary claim...and there is essentially zero evidence - so science isn't going to jump to that conclusion.
- When saints were exhumed hundreds of years ago in europe by monks, it was also sometimes reported that they looked as if recently buried. I recall there might be a scientific reason for this, or it could be that since the abbeys earnt a lot from pilgrims, they may have distorted that facts one way or another. 89.243.46.238 (talk) 14:04, 8 March 2009 (UTC)
- It's the same deal though. When the people doing the exhuming have a stake in the results - you can't expect a balanced view of the ensuing event. SteveBaker (talk) 17:02, 8 March 2009 (UTC)
- Excellent answer by SteveBaker, who, however, did not emphasize the most obvious explanation. Is "The Majlis (the Voice of Islam)" the most reliable source, or might one consider its articles on the level of the fictional accounts one finds in supermarket tabloids? Is there any independent source for this story which, supposedly, occured 77 years before the posting? Without one, we can doubt this tale from top to bottom. B00P (talk) 05:01, 9 March 2009 (UTC)
Crystal structures in Anza Borrego (California) State Park
A few days ago I noticed these crystals embedded in a stream bank in Anza-Borrego Desert State Park in California. At first I thought they were shells, as the area is the former delta of the Colorado River. They're 6"-12" in diameter and located in a dirt/sand matrix. The bank is 12'-15' high.
The light-colored crystals faces can be seen arranged in several lines in the accompanying picture, especially in the upper-right. While there was stratification of the dirt/sand, there didn't seem to be any major difference in the composition/texture of the strata near the lines of crystals. Just these things in (very dry) mud.
There were several pieces that had fallen from the bank. The one in the picture is (ahem) fresher than the others. Each was roughly cylindrical. The exposed parts of the crystals in the bank were nearly horizontal and roughly parallel, although only a few inches of each were exposed. It is a natural area with a high tourist load, so (ahem, much) excavation was out of the question.
There is no obvious ring structure such as found in stalactites, except for the outer 1/4" or so which is darker.
I asked a ranger at the visitor center and he started going off about "concretions". So I stopped asking.
What process would lead to formation of such crystals in a river delta? Is this a form of caliche?
Thanks. Saintrain (talk) 01:53, 8 March 2009 (UTC)
- I'm just guessing here - but it looks to me like a chunk of fossilised tree. If the tree were to be surrounded by the sand/sandstone up to some depth - then gradually, a few inches of the wood in the trunk would be dissolved away by water soaking through it - and replaced by whatever material is in these rocks. I think you could probably describe that as a 'concretion' - and it would certainly explain the smooth shape. SteveBaker (talk) 06:47, 8 March 2009 (UTC)
- I'm with the ranger on this, look like concretions to me, the area is well known for them apparently [23]. Concretions can be extremely smooth and regular, our article has some nice examples. Mikenorton (talk) 10:47, 8 March 2009 (UTC)
- I agree with Mikenorton that they appear to be concretions. The way that the exposed ends appear to be weathered away in the outcrop makes me wonder whether the cementing material mightn't be something more water-soluble than the more usual calcite—gypsum, perhaps? Deor (talk) 20:09, 8 March 2009 (UTC)
- The first time I scrolled past the photo today I thought it was a pork pie - I had to stop and look more closely. Just now I scrolled past, and thought of scotch pies. Must be hungry. Gwinva (talk) 06:23, 9 March 2009 (UTC)
- I agree with Mikenorton that they appear to be concretions. The way that the exposed ends appear to be weathered away in the outcrop makes me wonder whether the cementing material mightn't be something more water-soluble than the more usual calcite—gypsum, perhaps? Deor (talk) 20:09, 8 March 2009 (UTC)
- I'm with the ranger on this, look like concretions to me, the area is well known for them apparently [23]. Concretions can be extremely smooth and regular, our article has some nice examples. Mikenorton (talk) 10:47, 8 March 2009 (UTC)
- Thanks all. My apologies to the ranger. I had confused concretion and conglomerate. The rows of horizontal cylinders still intrigues me. Plant roots as nuclei, maybe. Saintrain (talk) 15:04, 10 March 2009 (UTC)
- I think it probably just reflects how water flowed through weaknesses in the bedding planes of the surrounding material. See the "Elongate concretions" section of the "Concretions" article. Deor (talk) 13:11, 11 March 2009 (UTC)
destroy the copper
BSM(=bismlah alrahman alrahim). We want to destroy a copper screw in a brass plate, fast with a chemical reagent and without damaging to brass. what is the way?unsigned post by 94.101.128.70 (talk) 05:38, 8 March 2009 (UTC)
- What's "BSM"? One of these? --Anon, 20:31 UTC, March 8, 2009.
- Since brass is an alloy of copper and zinc - any reagent that would dissolve the screw would also dissolve the copper in the brass - thereby greatly damaging it. So although I'm not a chemist - I'm going to go out on a limb and predict that it's not going to be possible. SteveBaker (talk) 06:41, 8 March 2009 (UTC)
- EC.: Beat me to it. Can't you just take a drill and drill it out? 76.97.245.5 (talk) 06:50, 8 March 2009 (UTC)
- There are tools specifically for this, see drill bit#Screw extractor. SpinningSpark 09:34, 8 March 2009 (UTC)
- Yeah - and they actually work...about one time in three! But if this genuinely is a copper screw as opposed to a copper-plated steel screw - then it'll be very soft and prone to shearing off. I'd be very surprised if a screw extractor would get it out without snapping it. By all means give it a shot - but I'm pretty sure you'll wind up drilling it out. But this must be a pretty special situation - copper is not a metal usually used for making screws. Screw#Materials_and_strength doesn't mention copper being used for making screws (because, mechanically, it makes no sense!). Would our OP care to divulge what exactly this is all about? SteveBaker (talk) 17:30, 8 March 2009 (UTC)
- I'd guess it's a copper-based alloy; some of them, like some bronzes, are the same color as copper but stronger. Since the brass and the bronze are both mostly copper, the problem that the same reagents will attack both still applies. I presume a penetrating oil like WD-40 has already been tried? Then I think you're stuck, no pun intended, with a mechanical approach. --Anon, 20:34 UTC, March 8, 2009.
- Yeah - and they actually work...about one time in three! But if this genuinely is a copper screw as opposed to a copper-plated steel screw - then it'll be very soft and prone to shearing off. I'd be very surprised if a screw extractor would get it out without snapping it. By all means give it a shot - but I'm pretty sure you'll wind up drilling it out. But this must be a pretty special situation - copper is not a metal usually used for making screws. Screw#Materials_and_strength doesn't mention copper being used for making screws (because, mechanically, it makes no sense!). Would our OP care to divulge what exactly this is all about? SteveBaker (talk) 17:30, 8 March 2009 (UTC)
- There are tools specifically for this, see drill bit#Screw extractor. SpinningSpark 09:34, 8 March 2009 (UTC)
- It will also help if you know the alloy numbers[24] of each material. Machine copper is weird stuff, I think it's only something like 50% or 70% copper. A screw made of "copper" would most likely be made of machine copper. It's designed not to be so soft, so that it can hold things like a screw-thread. Normal copper sort of sluffs off like playdoh if you try to mill it or work it in any way. Nimur (talk) 03:57, 9 March 2009 (UTC)
- For example, this company actually classifies CDA936 as a "bronze" (though I'm pretty sure I've seen it marketed as a copper - it's been awhile since I did anything close to the metalshop). They specifically state that it is particularly resistant to acid and chemical corrosion. Nimur (talk) 04:14, 9 March 2009 (UTC)
- By the way, BSM is Basmala. Polypipe Wrangler (talk) 11:58, 9 March 2009 (UTC)
Strange Lamarckian studies...
I was recently listening to an episode of BBC's In Our Time on Trofim Lysenko (I have a weird fascination with communist agricultural policies, whether they be Chinese or Soviet). In that very interesting episode, they go on a short tangent about how very recent studies have indicated that some aspects of Lamarckism/Lysenkoism might actually be real (they also made it perfectly clear that Lysenko was a nutcase, it's not like they were defending him). They talked about how people who lived through famines tended to pass some sort of genetic imprint of that famine (as an example they said that the grandchildren of people who had lived through a famine in Holland were shorter than the average person).
Is this true? Can someone link to one of these studies, or direct me to the appropriate Wikipedia article? I mean, this seems shocking to me, and I would like to find out more about it. Belisarius (talk) 13:30, 8 March 2009 (UTC)
- Check out Epigenetics. --98.217.14.211 (talk) 14:48, 8 March 2009 (UTC)
- (After EC) You're probably hearing about epigenetic changes that can be transmitted transgenerationally (see [25]). These examples are quite different than classical Lamarckism or Lysenkoism, which postulated that adaptive changes acquired by an individual could be passed down (the classic example being the giraffe, who stretches its neck by reaching for higher leaves and then "passes down" a trait for a longer neck to its offspring).
- Epigenetic changes, in contrast, do not change the DNA sequence but rather alter the characteristics of gene expression (the best example being methylation of certain DNA nucleotides) that can persist across many cell divisions (and in some cases across generations). In the example I linked to, it is shown that famine conditions in the 1940's led to DNA methylation changes -- within the growing fetuses -- that persisted into adulthood. There's quite a lot of research on the effects of in utero nutritional exposure and later onset of obesity, diabetes, etc. but less is known about the transgenerational persistence of these traits.
- The epigenetic changes reported in the "famine offspring" could be adaptive if the next generation became slighly smaller because of the altered gene expression and were therefore able to survive better in the famine conditions. However, this is hardly classical Lamarckism... it isn't as though individuals exposed to famine changed genetically in order to be able to survive the famine and then passed on those genetic changes to their offspring. --- Medical geneticist (talk) 15:17, 8 March 2009 (UTC)
- I don't understand how "the grandchildren of people who had lived through a famine in Holland were shorter than the average person" proves anything other than an entirely normal, predictable evolutionary pressure. Prior to the famine, some people were taller than average and others were shorter than average. If we believe that height has a genetic component then the famine strikes - the tall people need more nutrition so die off in larger numbers than small people. The "tall" gene is selected against and the "short" gene survives in larger numbers. Guess what? Two generations later, you have kids of below-average height. Why the heck do we have to invoke Lamarkism to have this work? SteveBaker (talk) 17:42, 8 March 2009 (UTC)
- Can you point to any evidence that tall people die disproportionately during famine, or is that just conjecture? On the flip side, recent experience suggests height increases within 1-2 generations of shift to higher-calorie diet, and I don't think that's because increases in calorie intake kill the short people. --Scray (talk) 17:58, 8 March 2009 (UTC)
- Well, the taller you are the more calories you need, so it makes sense that taller people would do less well in famines. --Tango (talk) 18:34, 8 March 2009 (UTC)
- I understand the basis of the specific assumptions being made. It's also possible that tall people would be able to compete effectively for food that is in short supply, depending on how food is distributed. So, rather than make these assumptions, I was wondering if this is anything more than speculation. --Scray (talk) 00:03, 9 March 2009 (UTC)
- Yeah - please don't go away with the idea that I'm saying that it's DEFINITELY evolution. I'm merely pointing out that evolution could quite easily produce this effect. There are any number of other possible causes (maybe people wore shoes with thicker heels before the last remaining "thick shoe heel tree" died during the famine and now everyone just seems shorter!!)...I don't know that...I'm just trying to point out that we DO NOT have to assume the highly discredited theories of Lamarckism/Lysenkoism are true as a result of this finding about Dutch children. There are much easier reasons and extraordinary claims demand extraordinary evidence...which this finding is not. SteveBaker (talk) 00:52, 9 March 2009 (UTC)
- I also believe it's well established that areas with little food produce dwarf animals, since the smaller versions require fewer nutrients (and the larger ones die off during periods of starvation). There's no reason to think that humans would be immune to this trend. As for people getting taller when there's more food, this probably isn't much due to short people dying, in the short term, but rather because their growth isn't stunted by periods of malnutrition, as it was for their ancestors. In the long run, being taller may have certain evolutionary advantages, such that people would eventually evolve to be taller in the presence of abundant food, but this effect would likely take thousands of years to become apparent. StuRat (talk) 21:08, 8 March 2009 (UTC)
- I think we're saying the same thing - it's not clear to me that changes in height over a short period of time would have a genetic basis, but an epigenetic influence might well play a role. --Scray (talk) 00:03, 9 March 2009 (UTC)
- Steve, I'm fairly sure they would only conclude it is an epigentic effect if the genome appeared to be basically unchanged but the expression of the given genes it in was affected. That's what epigenetics is about. It is not Lamarckism and it is not woolly-mindedness. Check out the article. Real chemistry and genes and everything. --98.217.14.211 (talk) 22:16, 8 March 2009 (UTC)
- Responding to Scray's last: In the mid-19th century, the average height of Frenchmen was less than it was in 1800 despite improved nutrition. Napoleon barely passed the height requirement in the French Army, and such a large percentage of taller young Frenchmen were killed in the wars from 1879 to 1812, thus siring less children, that there was a noticable shortening in the next two generations. B00P (talk) 05:30, 9 March 2009 (UTC)
Why do cancers seem to have purposeful ways of spreading or resisting death, yet cannot have evolved?
Cancers do not have generations so cannot have evolved, yet they seem to exhibit purposeful 'behaviour' which promotes their spreading in the body (see for example http://news.bbc.co.uk/1/hi/health/7813072.stm ) or resisting anti-cancer treatment. Why is this, what is the reason? Is it perhaps just an illusion, rather like a chess computer that simultaneously plays moves at random with millions of skilled opponents, so that those very few games which it wins seem to be the result of cleverness? Or what? 89.243.46.238 (talk) 15:56, 8 March 2009 (UTC)
- The trick is in your very first phrase. Cells within a tumor divide, and so there are 'generations' of malignant cells. Many of the mutations which permit uncontrolled cell division also inhibit or disable the cell's mechanisms for detecting and repairing DNA damage. Consequently, every time a malignant cell divides, there are copy errors: additional mutations.
- Many of these mutations will have no effect or will render the daughter cell less fit for its environment, but a few will aid the survival of the cell. External selection pressures – the body's immune system, chemotherapeutic agents, etc. – will encourage the survival and proliferation of cells best able to resist those challenges. The parallels with species evolution are evident.
- We have an article at Somatic evolution in cancer which goes into the matter in much greater depth and takes a more technical approach. TenOfAllTrades(talk) 16:15, 8 March 2009 (UTC)
Thank you for the explaination, now I understand. 89.241.34.62 (talk) 17:31, 8 March 2009 (UTC)
- Also note that, while we think of cancer as a disease people sometimes get, we probably all have multiple cancers inside us all the time. However, the vast majority of them aren't very efficient at spreading, and are easily dealt with by our immune systems long before they become noticeable. One piece of evidence for this is the case of the bubble boy, who lacked an immune system. When he receive a bone marrow transplant from his sister, this resulted in hundreds of cancerous tumors as a result of her Epstein-Barr virus. However, his sister showed no signs of cancer. It's logical to conclude that this virus also caused as many cancerous tumors in her, but which were wiped out immediately by her fully functional immune system. StuRat (talk) 20:59, 8 March 2009 (UTC)
- Excellent answer. It's also worth note that we consider some extremely non-malignant cancers "normal," like warts. The virus that causes them belongs to the same family of viruses that cause a few different types of cancer. arimareiji (talk) 22:10, 8 March 2009 (UTC)
A lot of the reason cancer is so difficult to treat isn't that the cancer cells are particularly adept at evading drugs, but that it's really bloody difficult to "hit" the cancer cells without hitting the normal ones. An explanation of the nature of drugs which kill cells might also help in understanding. If you're designing a drug to kill the disease-causing cells (foreign or malignant) in a patient, you have to make sure it's something that won't kill the good cells too. To use a crude analogy, think of it as if you were a police sniper - you can only shoot at parts of the bad guy that are exposed; you can't hit the hostage.
This is relatively easy for antibiotics, because there are huge differences between bacteria and human cells. There are a lot of cellular mechanisms in bacteria which don't exist in human cells, or are so radically different that a drug which stops XYZ process in bacteria won't have any effect on XYZ process in human cells.
But almost all of the cellular machinery is exactly the same for normal human cells and cancerous human cells. You can target cells which are rapidly dividing, but then you'll hit hair cells just for starters (one common side effect of chemo is for hair to fall out). You can target the out-of-control enzymes, but then you'll wreak havoc on general metabolism. And so on.
Usually, the only hope chemotherapy offers is to kill the vast majority of the cancer cells and hope the body will recognize and kill the rest. In my personal opinion, the only real hope for a long-term treatment for aggressive cancers is to help train the body to more easily recognize the cancer cells so it can kill them. Some therapies based on this are already in the works. (Full disclosure: I own stock in a company which works on one of these treatments. But I bought it after examining it closely and deciding it had high potential, not the other way around. ;-)
Does this help explain, or does it just make it more confusing? arimareiji (talk) 22:10, 8 March 2009 (UTC)
- Rather than anthropomorphizing ("particularly adept at evading drugs", and the OP's "purposeful"), which is quite common and understandable, it might be more accurate to describe cancers as genetically unstable, large in population size, and therefore highly diverse. As a result, maneuvers that are reliant on genetically-determined traits (such as drug transport and metabolism) are unlikely to kill all cancer cells. Combine that with continual growth, and relapse becomes likely, without ascribing any organized intelligence or intent to the cancer cells. I don't mean this to be criticism - it's just a good habit to consider the process as it is. --Scray (talk) 22:39, 8 March 2009 (UTC)
Some people, led by Leigh Van Valen, have proposed that some cancers cells have evolved sufficiently to be classed as a new species (though most disagree): Helacyton gartleri. Rockpocket 02:05, 9 March 2009 (UTC)
- Also of note here is the propensity of cancer cells to overexpress the genes for the ABC transporter, which seems to be a natural mechanism co-opted to pump anti-cancer drugs right back out of the cell; and the recently developed concept of cancer stem cells. These are cells that have escaped the normal controls on division frequency and genetic integrity, and continue to divide to produce the continuing stem cell and a "daughter" cell. The continuing stem cell line is already genetically compromised (by definition) and is thus prone to further genetic mutations. To that degree, cancer stem cells constitute a rapidly evolving population subject to selection pressure == evolution. See also The Selfish Gene - everything wants to survive.
- And of course there is Devil facial tumour disease, which could conceivably be classed as a new species. Franamax (talk) 02:26, 9 March 2009 (UTC)
HDU
This question inspired an article to be created or enhanced: |
What can HDU stand for, please?
- Since you asked at the science desk I'd bet you were looking for high density urethane. These [26] are other options. 76.97.245.5 (talk) 16:26, 8 March 2009 (UTC)
- Urgh - our HDU page was a complete mess - so I've written a new one especially for you! Check it out! SteveBaker (talk) 18:39, 8 March 2009 (UTC)
Thanks to 76.97.245.5 for the first answer, and to SteveBaker for the vastly-improved HDU page. Much appreciated.
Doe anybody have the Book introduction to Biotechnogy By Thieman
I need chapter 6 and I don't have the book and I was wondering if anybody could copy the pages on the web so I can look over them and do my assignment for them
It would be most appreciated Mike0078 (talk | contribs)
- It doesn't seem to be available for any preview. You might find it at a local library e.g. [27] or
Wikipedia:WikiProject Resource Exchange more specifically Wikipedia:WikiProject Resource Exchange/Resource Request might help. 76.97.245.5 (talk) 16:39, 8 March 2009 (UTC)
- Copying them would be a fairly horrendous copyright violation. Not good. Check out the library. SteveBaker (talk) 17:52, 8 March 2009 (UTC)
- Copying one chapter is often considered fair use, but I think only for personal use (so you can take it home from the library if it's a reference only copy, for example) - distributing it to someone else would probably be a violation. --Tango (talk) 19:57, 8 March 2009 (UTC)
- Copying them would be a fairly horrendous copyright violation. Not good. Check out the library. SteveBaker (talk) 17:52, 8 March 2009 (UTC)
Interpreting food nutritional value data
In tables which give you the nutrient content of 100 grams of each kind of food, are the numbers based on the only edible part of the foods? Particularly, in the case of fruits, is the "100 grams" number based on only the parts of the fruit that you eat (i.e. no peel, pits, etc)? Or is that 100 grams of fruit weighed intact? --173.49.9.169 (talk) 17:50, 8 March 2009 (UTC)
- It's a pretty safe bet that it's based on only the edible portion, and it's also a pretty safe bet that with almost anything except melons the difference wouldn't be significant regardless. With most fruits and veggies, by far the more the better. arimareiji (talk) 21:03, 8 March 2009 (UTC)
- Serving size has some info. arimareiji's statement is for healthy people. Individuals on certain restricted diets should consult their physician or dietitian. Those should be able to point you towards reliable information, calculation tables and the like. For unprocessed foods all information should be taken as "averages". Actual content does vary significantly. (E.g. onions grown in some parts are high in Selenium whereas those from parts with selenium poor soils have virtually none.) They don't withdraw a lab sample from each apple before they sell it to you :-)76.97.245.5 (talk) 00:15, 9 March 2009 (UTC)
What are the lower limits for RDA for saturated fat
I've been keeping a record of the amount of fat I eat every day, and as I do not like junk food, am vegetarian, and cook my own food, then I eat very little fat every day. I might not be eating enough. What are the LOWER limits for the amount of saturated and other fats that should be eaten each day please? I've spent a while googling for this information without success. Thanks. 89.241.34.62 (talk) 19:57, 8 March 2009 (UTC)
- The USRDA for saturated fat seems to be around 20 grams, but I take that to be a maximum. I'm not sure that there is a minimum requirement for saturated fat. Our Dietary Reference Intake article says the RDA for "saturated fatty acids" is "As low as possible". There does seem to be a minimum for fats, in general, though, but no requirement that any portion of them be saturated. StuRat (talk) 20:43, 8 March 2009 (UTC)
- It's quite accurate to say that there is a minimum intake of fat, though that's rarely a problem in Western culture. ^_~ I've heard 10% of calories as one estimate, YMMV. Since fat calories are more "dense" than carbohydrates and protein (9, 4, and 4 kcal/g respectively), that would mean 4-5% of intake per gram. There are specific fatty acids that your body can't synthesize, but they're not saturated. This provides a decent synopsis. Sorry I can't be more specific, but this is already treading on thin ice wrt not asking or answering medical questions. arimareiji (talk) 20:56, 8 March 2009 (UTC)
- Nutritional Q's like this are definitely not medical advice Q's. StuRat (talk) 23:48, 9 March 2009 (UTC)
Is This a Valid Concept in Evolution?
- When speaking of evolutionary change, often only a single characteristic of a creature is considered. Similarly, only a single external influence affecting a creature is considered. But, of course, there are many characteristics in each member of a species that relate to evolution (fitness to survive), and many external influences have an effect on evolutionary change.
- Furthermore, each member of a species is unique. It differs from other members of the same species in many small ways. The totality of the characteristics held in common, the unique characteristics, and external influences, determine a member's survivability and longevity, and hence its direction of evolution. (Long life normally results in more offspring being produced. Members with the most offspring will come to prevail in numbers over other members of the species, and will establish the evolutionary trend. This assumes that at least some unique characteristics are inheritable.)
- Each unique characteristic will vary in its potency in relation to longevity. Also, the degree of potency may vary from one generation to the next, or even disappear from a new generation. External influences which affect longevity may also vary in potency from generation to generation. To clarify the principle being described, it will be assumed in this discussion that the potency of a unique characteristic, and the potency of environmental factors, remain unchanged over generations.
- For any particular member of a species, the various unique characteristics that aid longevity can be expressed, respectively, by the capital letters A, B, C, …. The unique characteristics that hamper longevity can be expressed by the letters a, b, c, …. The total effect of all unique characteristics (U) on longevity can be expressed as U = A+B+C…. – (a+b+c ….).
- Characteristics held in common that affect longevity can be expressed as C.
- The external influences that aid longevity can be expressed by the Italic capital letters A, B, C, …. The external influences that hamper longevity can be expressed as a, b, c, …. The total effect of all external influences (I) on longevity can be expressed as I = A+B+C…. – (a+b+c ….).
- The combined effect of unique characteristics, common characteristics, and external influences on longevity (L) can be expressed as L = U + C + I.
- The above considers only an individual member of a species, and its descendents that breed true. Other members have their own unique characteristics and will have their own survivability and longevity. There will be unwitting competition between members with regard to which member will have the most true-breed descendents. The true-breed descendants of a member that has the highest L will eventually prevail over all other descendants. The descendants of other members will eventually become extinct because they will be in competion for food with increasing numbers of high-L (long-lived, more offspring) members.
- Complicating the matter is the fact that unique characteristics, common characteristics, and external influences are not quantifiable in their effect on longevity. Indeed, some of the characteristics and influences would probably be unknown to science. Therefore, while the above formulas express general principles, they cannot give specific results.
- A further complication is that nearly all species of living things reproduce sexually. Therefore, species members may interchange any unique characteristics that can be passed on by sexual reproduction. None of the resulting half breeds will have maximum longevity.
- Maximum L may be only very slightly longer than other values of L. But over thousands of generations it will make a big difference in the numbers of members that will survive.
- A single species member that by chance had an extra long life, and its descendents which inherit that capability, will determine the direction of evolution of the species. Shorter lived members, with their uniqe characteristics, will die out.
- With regard to a single member of a species determining the direction of species evolution, I remember reading something about that for humans. The effect is indicated in cells and in the female line of descent. – GlowWorm.
- External influences are not inherited, so what you are saying makes no sense. How well a particular organism reproduces depends on how well its inherited characteristics suit the environment it is in and a generous dose of luck. Over a long enough time the influence of luck reduces and those organisms which best suit the environment will prevail over the others. That is evolution. The environment is continually changing (both due to changes over time and due to organisms moving from one place to another), so evolution is a continuous process. One key part of the environment is other living organisms (of the same and different species), which are also subject to evolution, which means you get all kinds of complex interactions making the whole thing rather chaotic and unpredictable. --Tango (talk) 23:42, 8 March 2009 (UTC)
- I did not say external influence is inherited. I said it affects evolution. Also, earlier on this thread I mentioned that other living things may be considered part of the environment. – GlowWorm.
- You said "A single species member that by chance had an extra long life, and its descendents which inherit that capability", that's just not the case. Its descendants only inherit the genetics, which is only one component in determining longevity. (And longevity isn't the only thing to consider - number of offspring that reach breeding age is related to longevity, but it isn't directly proportional.) --Tango (talk) 00:12, 9 March 2009 (UTC)
- I did not say external influence is inherited. I said it affects evolution. Also, earlier on this thread I mentioned that other living things may be considered part of the environment. – GlowWorm.
- So many errors - so little time!
- When speaking of evolutionary change, often only a single characteristic of a creature is considered. - Well, in the simple examples quoted for simplicity in text books and such - but in reality, no.
- Similarly, only a single external influence affecting a creature is considered. - Again, not in practical applications of evolutionary theory.
- Furthermore, each member of a species is unique. - No, in many animals there are identical twins and in the case of creatures that reproduce asexually (an Amoeba, for example) - the offspring are essentially clones of the parent - except for DNA transcription errors and such.
- Long life normally results in more offspring being produced. - Not so - in fact most species are programmed to cease reproductive capability later in life. Female humans (for example) cease to be reproductively capable at about the same age all around the world - despite drastically different life expectancies.
- Members with the most offspring will come to prevail in numbers over other members of the species, - PROVIDING that the reason they were able to produce more offspring is (a) genetically heritable and (b) exposed to a similar set of environmental pressures. If (for example) a species is exposed to extreme drought - but ample food is available - then a drought-resistant strain that can more efficiently extract moisture from the food will survive into the next generation. However, if in ensuing years there is plenty of rain - but horrible food shortages - then the offspring of that successful earlier generation may suffer horribly.
- Each unique characteristic will vary in its potency in relation to longevity. - No. Longevity isn't everything - proclivity and reproductive success is very important. It's not as simple as you try to make it sound.
- To clarify the principle being described, it will be assumed in this discussion that the potency of a unique characteristic, and the potency of environmental factors, remain unchanged over generations. - That might clarify your explanation - but it's far from being true. When you look at very successful species, you come across animals like Wolves and Bears - which will eat almost anything - species which are HIGHLY adapted to (for example) eat just one food or hunt in just one way or which can only produce young if they swim up some highly specific river to spawn...those are very fragile...and a tiny change in the environment can wipe them out. Response to change is a vital part of why evolution works. Consider sexual versus asexual reproduction: Species that reproduce asexually can reproduce much more efficiently - but the problem is that there is very little genetic variation - so they are unable to change rapidly when the need arises. The evolution of sex itself is in response to the somewhat abstract evolutionary pressure - which is the ability to respond rapidly to changes in evolutionary pressure!
- For any particular member of a species, the various unique characteristics that aid longevity can be expressed, respectively, by the capital letters A, B, C, …. The unique characteristics that hamper longevity can be expressed by the letters a, b, c, …. The total effect of all unique characteristics (U) on longevity can be expressed as U = A+B+C…. – (a+b+c ….). - I disagree - it's more likely to be something like U = A x a + B x b + C x c. If you have the gene for 'B' (ability to survive a drought, say) and the environmental pressure 'b' is zero because it rains a lot - then B has no benefit so it's contribution is zero. But in reality it's going to be a VASTLY more complex equation U = ( A + B ) x ( a + b ) + A x C x c ...or something.
- The combined effect of unique characteristics, common characteristics, and external influences on longevity (L) can be expressed as L = U + C + I. - but Longevity isn't it - it's ability to reproduce...which is not at all the same thing.
- The descendants of other members will eventually become extinct because they will be in competition for food with increasing numbers of high-L (long-lived, more offspring) members. - Not always. The Origin Of Species (to coin a phrase) requires that sometimes the members with the new and novel genetic makeup may be geographically separate (eg stuck on an island) or may have evolved to exploit a different ecological niche. Hence there are now two species where there was once one - and hence there may be no extinction involved.
- A further complication is that nearly all species of living things reproduce sexually. - Is that true? I really doubt it. Bacteria, many plants, fungii, worms...lots of species do not.
- Therefore, species members may interchange any unique characteristics that can be passed on by sexual reproduction. None of the resulting half breeds will have maximum longevity. - That's nonsense. If some individuals of the (say) anteater species have a gene for longer noses - and other individuals have a gene for longer tongues - then neither of them may be able to reach into the deepest termite mounds. But a lucky breeding might produce an anteater with both the gene for long noses and the gene for long tongues - and therefore succeed where neither of it's parents could. The resulting "half breed" (poor choice of terminology...but whatever) has only characteristics that were present in the general population - yet is better than any of them.
- A single species member that by chance had an extra long life, and its descendents which inherit that capability... - No - if they lived longer by CHANCE then there is nothing to pass on genetically. Only those that reproduce more efficiently BECAUSE of their genes will pass that on to their offspring. The Zebra that happens not to meet any big lions (because it lives in a zoo) will have offspring that are no more 'lion-resistant' than their parent - and if returned to the wild will do no better than all of the other zebras.
- With regard to a single member of a species determining the direction of species evolution, I remember reading something about that for humans. The effect is indicated in cells and in the female line of descent. - all humans are descendants of a single person - all animals are descendants of a single animal. There are characteristics (in humans at least) that are carried on X chromosome. Women have two X chromosomes - men have an X and a Y instead. If a child is born that gets the X chromosome from the man (and, inevitably, an X from the mother) - then it must have two X's and therefore be female. If it gets the Y chromosome from the father, it will be a boy and his X chromosome will be from the mother. So X information carried on the X chromosome follows the female line because a father cannot pass his X chromosome onto his son(s). But that's a small minority of genes - and it's not true in all species.
- PHEW! SteveBaker (talk) 00:30, 9 March 2009 (UTC)
- Regarding your last point - the organelles all come from the ovum, so the mother, so things like mitochondrial DNA are inherited solely through the female line. Y-chromosomal DNA is inherited solely through male line. That doesn't mean we all get of mitochondria and Y chromosomes from the same individual, though. There isn't a single "first human" from whom everyone is solely descended. There are common ancestors of all the individuals in a species, but there are lots of them. See most recent common ancestor and identical ancestors point for more discussion of this. --Tango (talk) 00:46, 9 March 2009 (UTC)
- Actually, both chance and how well an individual is adapted to survive in its current environment play their part. Evolution is statistical mechanics in action.
- Hypothetical: You have 100 zebras. 50 can run faster but need more food as a result (group A), and 50 zebras are "normal" (group B).
- 7 A's and 4 B's die by random chance.
- 8 A's and 4 B's starve to death.
- 5 A's and 22 B's get eaten by lions.
- All the rest reproduce, giving 2 offspring per individual.
- Next generation has 60 A descendants and 40 B descendants. If this pattern keeps up, soon B's will be a small minority. (But if food and/or lions become scarce, those proportions could easily change.) This also serves to illustrate why single genes are rarely the single determining factor in an individual's likelihood of reproducing. There's almost always a tradeoff for every "advantage," and the balance can easily shift depending on changes in the environment.
- I know the above is oversimplified, i.e. not taking into account that A's and B's can mate, dominant/recessive genes, multiple alleles, polygenic traits, etc. But I thought it might be illustrative.
- Finally, yeah - humans have 23 chromosome pairs. Only one is sex-linked. And don't even get me started about the plethora of ways gender is determined, and determines how genes get passed, in other species. XY isn't the only model, by far. arimareiji (talk) 01:08, 9 March 2009 (UTC)
- Actually, both chance and how well an individual is adapted to survive in its current environment play their part. Evolution is statistical mechanics in action.
- Regarding your last point - the organelles all come from the ovum, so the mother, so things like mitochondrial DNA are inherited solely through the female line. Y-chromosomal DNA is inherited solely through male line. That doesn't mean we all get of mitochondria and Y chromosomes from the same individual, though. There isn't a single "first human" from whom everyone is solely descended. There are common ancestors of all the individuals in a species, but there are lots of them. See most recent common ancestor and identical ancestors point for more discussion of this. --Tango (talk) 00:46, 9 March 2009 (UTC)
- If your model would hold water we'd have a hard time explaining why we still have genetic disorders that kill their carriers at a young age. Sickle cell anemia is one of the more commonly known, but not the only one. As it happens this trait offers its carriers some protection against Malaria. So, although longevity is very much curtailed, individuals have a higher chance of reaching reproductive age and reproducing. Fits evolution very nicely. One thing that often gets mixed up is that benefiting the individual and benefiting the survival of the species aren't the same. The world is full of examples of odd appendages, bright colors instinctive behaviors that serve no other function than to attract a mate. This can be and often is very detrimental to the individual. But as long as that individual manages to mate with more females than an individual without, the trait will get passed on. Looking around lots of short lived creatures from bacteria that live in your gut to cockroaches (Hopefully not under your floorboards:) to mice contradict your equation. A single mouse can spawn thousands of descendants in several generations in the time it takes a long lived human just to reach sexual maturity. Adding a couple of examples to Steve's list of asexual reproduction: many species of snails choose their sexual orientation when they meet. Female sharks can reproduce with or without males. 76.97.245.5 (talk) 02:25, 9 March 2009 (UTC)
- "So many errors" that even the eagle-eyed SteveBaker missed an obvious one. The OP states, "Characteristics held in common that affect longevity can be expressed as C." However, he has previously defined C otherwise. He needs a different symbol. Here, try §.
— B00P (talk) 06:05, 9 March 2009 (UTC)- And one by SteveBaker, shock horror! Most animals are not programmed to cease reproductive activity later in life. That humans are is of great interest and there have been a number of putative explanations why. I'm not sure there's any other animals with such a definite menopause as opposed to just not being so fertile when very old, some apes and elephants probably are the closest with the way they lose fertility I'd guess. Dmcq (talk) 16:30, 9 March 2009 (UTC)
- An easily misunderstood statement by SteveBaker as well: "all humans are descendants of a single person". Keep in mind that the transition from non-human to human was a smooth one, and that it is impossible to pinpoint a time when it occurred. If one were to make an arbitrary decision about when the transition occurred, there were thousands of persons living and interbreeding at that time, and more or less every one of them was an ancestor to every person alive today. When it comes to mitochondria, however, it is well established that all human mitochondria alive today descend from a
most recentsingle common ancestor that lived in a woman in East Africa, about 140,000 years ago, the so-called Mitochondrial Eve. The most recent common ancestor of all humans alive today may have lived as recently as 3000 years ago, see Mitochondrial Eve#Misconception: The Mitochondrial Eve and Most Recent Common Ancestor (MRCA) are the same. --NorwegianBlue talk 19:48, 9 March 2009 (UTC)
- "The most recent common ancestor of all humans alive today may have lived as recently as 3000 years ago,..." Ahem! A common ancestor of all Icelanders, Maoris, Khoi-San, and Japanese only 3,000 years ago? No. B00P (talk) 01:35, 10 March 2009 (UTC)
- The statement from our article is, On the arbitrary assumption that people mate with a random individual drawn from the whole of the global population, the theoretical MRCA could have lived as recently as 3,000 years ago, citing a 2004 Nature paper as a source. Whether that arbitrary assumption is reasonable, may of course be questioned, but I assume it is discussed in the paper (which I haven't read, but I'll try and get a copy). --NorwegianBlue talk 08:03, 10 March 2009 (UTC)
- "The most recent common ancestor of all humans alive today may have lived as recently as 3000 years ago,..." Ahem! A common ancestor of all Icelanders, Maoris, Khoi-San, and Japanese only 3,000 years ago? No. B00P (talk) 01:35, 10 March 2009 (UTC)
- Update: The abstract of the paper is here. The paper takes known migrations into account, trying to capture historical population dynamics realistically through Monte Carlo simulations. The authors conclude that "the genealogies of all living humans overlap in remarkable ways in the recent past. In particular, the MRCA of all present-day humans lived just a few thousand years ago in these models. Moreover, among all individuals living more than just a few thousand years earlier than the MRCA, each present-day human has exactly the same set of genealogical ancestors.". --NorwegianBlue talk 10:31, 10 March 2009 (UTC)
March 9
Exploding Cell Phones During Recharging
A friend who lives in Spain sent me an email warning about not using a cell (mobile) phone while it is recharging. I will spare you all the gory photos, but the text read:
- Don't know if any of you have seen this before, but if you're prone to answering the phone whilst its plugged into the charger you might want to rethink that practice !!!
- A few days ago, a person was recharging his mobile phone at home. Just at that time a call came in and he answered it with the instrument still connected to the power outlet. After a few seconds electricity flowed into the cell phone unrestrained and the young man was thrown to the ground with a heavy thud. His parents rushed to the room only to find him unconscious, with a weak heartbeat and burnt fingers. He was rushed to the nearby hospital, but was pronounced dead on arrival. Cell phones are a very useful modern invention. However, we must be aware that it can also be dangerous...
- Never use the cell phone while it is hooked to the electrical outlet!
I tried a few variations on "exploding cell phones" and "dangers of recharging cell phones" in the Archives' Search box, but didn't find anything useful to me, as I had no plans to use the cell phone while pumping gas. Is this email warning reasonable; that is, is it true or possibly true? Would it make a difference if the phone was recharging in Europe at 220 V as opposed to in North America, at 125 v? Thanks for your help. // BL \\ (talk) 00:29, 9 March 2009 (UTC)
- This stinks of "Urban legend" - if this were a common occurrence, you can bet there would be HUGE warning stickers all over your cellphone telling you not to do it - and they'd probably make the phone so it would refuse to take or accept calls while charging in order to discourage this terrible practice. As always, urban legends should be checked out at http://www.snopes.com - and indeed it has a page about it: [28]. The second example they quote - is your email...word for word! It concludes that this is an exceedingly rare thing - but that once in a while, cellphone batteries can explode. (They point out that the ONLY proven cases have been Nokia phones WITH COUNTERFEIT BATTERIES...they also point out that in a couple of cases, the person was merely sleeping a few feet away from the phone when it exploded...so making calls on the phone isn't the problem). But there are maybe half a dozen cases worldwide over a period of several years. It's also dangerous to eat lunch (you could choke and die - the food could have been poisoned or it could harbor deadly diseases) - it's exceedingly dangerous to drive your car - all of these things are VASTLY more likely than that you'll be killed - or even harmed - or even mildy inconvenienced - by an exploding cellphone. So the advice "Never use the cell phone while it is hooked to the electrical outlet!" is about as useful as "NEVER EAT LUNCH!" or "NEVER DRIVE YOUR CAR!!!". It's quite utterly bogus, terrible advice. By all means carry on using your phone - and if you own a Nokia and ever have cause to change the batteries - make sure you buy them from Nokia and not from some guy at your local market! Please - when you hear this crap via email - either check it out on snopes.com - or just ignore it. SteveBaker (talk) 00:38, 9 March 2009 (UTC)
- Yeah, because talking on your cell phone 24/7 is a basic human need like food and transportation. A better analogy would be "not driving your car after midnight (when the drunks are driving home)". Each person is capable of weighing the odds and deciding if the risks are acceptable to him or her—if not talking on your cellphone while it's charging makes *you* feel better then by all means go ahead and ignore my hyperbolic collegue. – 74 01:14, 9 March 2009 (UTC)
- Actually it has been pretty well established by risk communicators that most people are pretty bad at weighing risks for them sensibly, even if they have really good sources of information. (Ergo, Las Vegas.) The human brain is not a terribly rational organism—it gives certain perceived outcomes vast more weight than others even if the odds are astoundingly against them. (On a side note, is talking on a cell phone a basic human need like food? No, of course not. Like transportation? Yes, almost exactly...) --98.217.14.211 (talk) 01:57, 9 March 2009 (UTC)
- Ha. Are automobiles a "basic human need" now?
- Seriously, I regularly use my phone when it's plugged in. Not because I talk on the phone "24/7", but because I only rarely use my phone, and I don't notice when the battery runs down. ... until I need to make a call. APL (talk) 15:23, 11 March 2009 (UTC)
- Automobiles? No. Steak? No. Transportation? I think a good case can be made (how many self-sufficient people do you know?). In fact, I'd list "transportation" higher than "communication" ("food" and "shelter" are obviously higher still). – 74 19:39, 11 March 2009 (UTC)
- Yeah, because talking on your cell phone 24/7 is a basic human need like food and transportation. A better analogy would be "not driving your car after midnight (when the drunks are driving home)". Each person is capable of weighing the odds and deciding if the risks are acceptable to him or her—if not talking on your cellphone while it's charging makes *you* feel better then by all means go ahead and ignore my hyperbolic collegue. – 74 01:14, 9 March 2009 (UTC)
- (After e/c, and I have read your amendments, Steve - I added your name as 74.137.108.115's comment has intervened, and I was not directing my remarks to him/her.) I shall forgive you for the "Duh" in the original edit summary. (Please understand that I am laughing as I type this.) I think the photos short-circuited my brain and I forgot common sense, and S.O.P, which includes checking Snopes and Mythbusters and a general look around the Net. And, given how thoroughly, albeit relatively gently, you dissected the argument presented by the OP in the immediately preceding query, I am not surprised your patience for those who may not "think before they type" is in current short supply. So, thank you, and I shall slink off to whimper quietly in the further reaches of cyberspace, but not before I email the friend the Snopes's link. // BL \\ (talk) 01:06, 9 March 2009 (UTC)
- The interesting question is whether the friend who forwarded this junk to you will, in turn, forward it to all of the other people (s)he sent it to - and also back to the person who sent it to him/her? I strongly suspect not. Dramatic news of exploding cellphones travels fast - news that the world is a calmer, simpler place without all of these dread dangers...that travels much more slowly. SteveBaker (talk) 01:24, 9 March 2009 (UTC)
- P.S. I don't even have a cell phone. // BL \\ (talk) 01:36, 9 March 2009 (UTC)
- Just a general note on this story: whenever you see something that warns that an everyday activity that seems harmless is actually horribly dangerous and could kill you at the drop of a hat, there are generally some telltale signs of an urban legend:
- Someone dies or is horribly mutilated in a dramatic fashion.
- It's telling you that something you may do all the time is a very bad idea.
- It's too good or too bad to be true, or violates common sense -- that is to say, the results of the action are dramatically disproportionate to the action itself.
- There are no dates, names, or places included in the warning, so there's no way for you to verify the story.
- It's told as a story, with a degree of drama and a punch line or a moral at the end.
- It's reported in an e-mail that's obviously being passed around, rather than a news site, and you are encouraged to pass it on to everyone you know.
- This particular story hits just about all of the above points. Not all urban legends do, of course -- and just because something is an urban legend, that doesn't necessarily mean it's not basically true. But if someone tells you something that hits, oh, let's say three of the above points, your bullshit detector should be tingling, and you probably shouldn't accept it at face value. (Which you didn't, of course, so good job there!) -- Captain Disdain (talk) 08:03, 9 March 2009 (UTC)
Hardness of diorite?
Can someone tell me the Mohs scale of mineral hardness value for diorite? (It's not in the list.) RJFJR (talk) 02:47, 9 March 2009 (UTC)
- I'll guess at around 6, based on a quick look at the hardness of the components of diorite. I imagine the exact value would depend on the relative concentrations of the constitiuent minerals. Mattopaedia Have a yarn 03:36, 9 March 2009 (UTC)
- Assuming that the main components are feldspar and hornblende, then around 6 would be about right. If there is a lot of biotite (hardness 2.5-3) in a particular variety, that's a different matter. Mikenorton (talk) 09:04, 9 March 2009 (UTC)
Thank you. It's weird, I was wartching something on TV and they said diorite was so hard the only thing that could cut it was diamond (they couldn't figure out how an ancient city was built), but 6 isn't that hard. They pronounced it die-or-ite and I think I looked up the right spelling. RJFJR (talk) 15:54, 9 March 2009 (UTC)
- Well, assuming that they really were talking about diorite (and that is the way its pronounced in my experience), you could cut it with anything made mainly of quartz such as quartzite, obsidian or chert. Mikenorton (talk) 16:46, 9 March 2009 (UTC)
- Please tell me you weren't watching that "Ancient Aliens" show on the so-called-"Discovery Channel". I caught about 10 minutes of it before my wife made me switch it off because the shouting was annoying her! That show was SO full of bullshit and misinformation - I don't know where to start. Lying about the hardness of a mineral is the very least of the crap they fed people last night. SteveBaker (talk) 18:20, 9 March 2009 (UTC)
- I listened to it while doing a crossword puzzle (which shows how much attention I wasn't paying to the show). Occasionally I put my head up when they said something particularly lacking in rigor. I walked out when someone tested a 'bagdad battery' with a voltmeter under no load conditions. (Couldn't they find anyone who knew what internal resistance means?) I went and read the wikipedia article on diorite instead. RJFJR (talk) 18:49, 9 March 2009 (UTC)
Identify an insect
This question inspired an article to be created or enhanced: |
This question inspired an article to be created or enhanced: |
Good day. Can someone identify this insect? I photographed it today, in the Anza-Borrego Desert State Park, California. It was about 1.5 to 2 inches long. Thanks. Rockpocket 03:17, 9 March 2009 (UTC)
- Looks like a soldier beetle to me. --Dr Dima (talk) 04:43, 9 March 2009 (UTC)
- I think you may be correct, thank you. Next question, can anyone identify a species? Rockpocket 05:56, 9 March 2009 (UTC)
- Actually, after a bit more research, I think it is the Desert blister beetle (Lytta magister). [29] Rockpocket 06:21, 9 March 2009 (UTC)
- Can well be. Lytta genus is in Meloidae (blister beetles) rather than Cantharidae (soldier beetles), so I was wrong, then. My apologies. For the fans of entomological confusion, here's a semi-famous fact: Meloidae contain and secrete cantharidin, Cantharidae do not. Actually, the historic confusion between the two families is to blame for that. The "Spanish fly", Lytta versicatoria, has been known as Cantharis vesicatoria or (usually dead and dried) as cantharides. Still, my bad. --Dr Dima (talk) 07:18, 9 March 2009 (UTC)
- Not at all, your answer got me looking in the right direction. Thanks again. Rockpocket 07:32, 9 March 2009 (UTC)
- I made a few tweaks to your new article, Rockpocket. Now we need someone to create an article on the species' describer, George Horn, who seems notable enough. Deor (talk) 15:22, 9 March 2009 (UTC)
- … which I've just done at George Henry Horn. Deor (talk) 21:51, 9 March 2009 (UTC)
- I made a few tweaks to your new article, Rockpocket. Now we need someone to create an article on the species' describer, George Horn, who seems notable enough. Deor (talk) 15:22, 9 March 2009 (UTC)
- Not at all, your answer got me looking in the right direction. Thanks again. Rockpocket 07:32, 9 March 2009 (UTC)
- Can well be. Lytta genus is in Meloidae (blister beetles) rather than Cantharidae (soldier beetles), so I was wrong, then. My apologies. For the fans of entomological confusion, here's a semi-famous fact: Meloidae contain and secrete cantharidin, Cantharidae do not. Actually, the historic confusion between the two families is to blame for that. The "Spanish fly", Lytta versicatoria, has been known as Cantharis vesicatoria or (usually dead and dried) as cantharides. Still, my bad. --Dr Dima (talk) 07:18, 9 March 2009 (UTC)
- Actually, after a bit more research, I think it is the Desert blister beetle (Lytta magister). [29] Rockpocket 06:21, 9 March 2009 (UTC)
- I think you may be correct, thank you. Next question, can anyone identify a species? Rockpocket 05:56, 9 March 2009 (UTC)
Are all treatments that depend on belief placebos?
If a patient has to believe in the viability of a health treatment for it to work, is it necessarily a placebo? NeonMerlin 04:48, 9 March 2009 (UTC)
- If a "treatment" requires belief for any recuperative action than it must not be bioactive. Any recuperative action it does have must therefore be by placebo effect, so yes. However, I would hazard that there is a middle ground where bioactive compounds are more effective when the patient believes it is a cure-all. In these cases you would have to define "work", before your question could be answered. Rockpocket 06:14, 9 March 2009 (UTC)
- No. There's an interesting article in the New Scientist regarding placebo and the placebo effect, which among other things tells us that belief is not the main factor in the placebo effect: rather there are other factors such as being made to feel comfortable with the consulting environment and physician. [30] This article also gives the information that people who believed the morphine they were being given was going to work, experienced a greater analgesic response than those who didn't. Nobody would suggest that morphine came under the placebo category! --TammyMoet (talk) 10:06, 9 March 2009 (UTC)
- There are a couple of "mind over body" techniques that basically work by the person controlling their breathing, heart rate, thought processes etc. I don't think they would be effective if people didn't think it would work. They also work differently from placebos because the individual tries to actively control bodily functions. There is unfortunately a grab bag for this kind of thing that spans from tried and established relaxation techniques to the latest and greatest loony cure-all fads. Someone learning not to turn into a quivering bag of hysterics or fainting whenever there's a thunderstorm without taking any "little pink pills" is likely to depend on that individual starting to believe that the sky isn't going to fall and hit him. That's a far cry from things like "curing infections through willpower". I'd suggest antibiotics for the latter which will work whether you hold the firm conviction that pharmaceutical companies are run by crooks or not. I was trying to find some examples for you, but anything even remotely going in that direction is likely to come under much scrutiny and as a layperson it's hard to distinguish the ones that deserve it from the "friendly fire" casualties. 76.97.245.5 (talk) 10:57, 9 March 2009 (UTC)
does atmospheric pressure include the vapor pressure of the water vapor in it?
I'm trying to do a lab with some psychrometric equations. Atmospheric pressure for the room (I believe) in which our experiments took place was measured, but I am not sure whether this is total pressure or the pressure of dry air. Does atmospheric pressure normally include the water vapor pressure? Thus in a closed system the atmospheric pressure surrounding a reservoir of water should increase with further evaporation? (This is different from saturation water vapor pressure and water vapor pressure being equal, I believe.)
Particularly I am confused by an equation I'm given for specific humidity -- the ratio of the molecular weight of water and dry air (0.622) multiplied by the water vapor pressure , divided by (total pressure - 0.378*water vapor pressure). Maybe the math is not working at 4 am in the morning, but why subtract water vapor pressure from the total pressure of the air, if I'm trying to calculate specific humidity which tries to relate the amount of water vapor to the amount of mixture? John Riemann Soong (talk) 08:16, 9 March 2009 (UTC)
- Vapor pressure has a separate section (albeit brief) on use in meteorology at the bottom. 76.97.245.5 (talk) 11:02, 9 March 2009 (UTC)
- The pressure measured by a barometer will include water vapor partial pressure, but that does not mean that the atmospheric pressure over a water reservoir will be any higher. Dauto (talk) 17:05, 9 March 2009 (UTC)
- Wouldn't water vapor in air make the air less dense and lighter? Edison (talk) 19:30, 10 March 2009 (UTC)
- Yes. Dauto (talk) 03:35, 11 March 2009 (UTC)
air sacs
What is the name of air sac which is found in human's lung? —Preceding unsigned comment added by 196.200.102.42 (talk) 09:16, 9 March 2009 (UTC)
- The normal structure is an alveolus, whereas disease can result in blebs and cysts. --Scray (talk) 09:28, 9 March 2009 (UTC)
Meson number
We have baryon number, but, apparently, "meson number" is not a noted concept. Can someone shed light? —Anonymous DissidentTalk 09:52, 9 March 2009 (UTC)
- Ah, don't worry. I guess (1-1)/2 doesn't make sense, so I answer my own question. —Anonymous DissidentTalk 10:02, 9 March 2009 (UTC)
photons
how do photons carry light? —Preceding unsigned comment added by Lightfreak (talk • contribs) 12:28, 9 March 2009 (UTC)
- Photons are light. Light isn't some separate thing which they carry. Algebraist 12:31, 9 March 2009 (UTC)
light
is light an electromagnetic radiation or the theory of photons right?```` —Preceding unsigned comment added by Lightfreak (talk • contribs) 12:40, 9 March 2009 (UTC)
- Your question doesn't make much sense, but I think you want Wave–particle duality. Algebraist 12:44, 9 March 2009 (UTC)
- Light is an electromagnetic radiation and the photon theory is right. Dauto (talk) 16:33, 9 March 2009 (UTC)
- Light is its own thing. It is not a particle, and its not a wave. It is just light. It's just doing what it always does. It is important to note that what is changing is not the light itself, its the model we use to explain light. We use the wave model to explain some behaviors of light, and we use the particle (photon) model to explain other behaviors. Light is not switching between these two forms, it doesn't change its behavior, what changes is the models we have to use to explain its behavior in terms that have analogs in the "Big World". The problem is that light has no analog in the big world, so we need to use these two models in conjunction. We treat light as a hybrid of a wave and a particle, but light itself does not change its nature, what is changing is the model we use to explain it in terms we can grasp. --Jayron32.talk.contribs 16:52, 9 March 2009 (UTC)
thanks! But could you please define light and its composition?--Lightfreak (talk) 09:23, 10 March 2009 (UTC)
- Light is what comes out of the light bulb when you flick the light switch. That's just what light is. Light can be thought of as modulations in electric and magnetic fields, or as massless elementary particles, but that's not how it is defined. It isn't really composed of anything - it's just light. --Tango (talk) 11:42, 10 March 2009 (UTC)
- Sure. Light (by extension all forms of electromagnetic radiation) is perterbations of the electric field inherent in the universe because of the existance of electric charge. The behavior of these perterbations are explained by Maxwell's equations. When you have an electric charge, you generate an electric field. If you disturb that field, you generate a wavefront much like throwing a stone into a clean lake. Except for two things: 1) The field is three dimensional and not two and 2) you could also look at the wave front as a little billiard ball. See, this is where the physics does not match our perceptions; light is not a substance; it does not have a composition. It is energy. It's an action, not a stuff.
- Maxwell himself made the common mistake, in his A Dynamical Theory of the Electromagnetic Field, when he refered to the electric field as a "substance", expecting it to be related to the Aether which supposedly provided the medium which carried the wave. Aether, however, does not exist. Modern physics treats space itself as this medium; thus we get the rather bizarre concepts as a "mediumless wave". If light is a wave, then some "substance" must be vibrating to carry that wave (think like an ocean wave or a guitar string vibrating). However, light is not a wave, per se, but it behaves like a wave in the sense that it does some physical things that waves do, like refraction and diffraction. Also, since it a) isn't actually being carried inside a medium, and b) it can be "quantized" (i.e. it behaves like it exists in localized places and times) then it also behaves like a particle, a little billiard ball. See, particles don't need a medium to propagate in, so if we think of light that way we do not have to invent any "Aether", which we know not to exist. Plus, particles are the only way to explain behaviors like the Photoelectric effect, which would not make sense at all if light were a wave. Except that particles don't work either, since they don't diffract like waves do, and light clearly diffracts (bends around corners). So we are left with the psychologically unsatisfying result that light is not a wave, or a particle, but some thing which behaves like one or the other depending on how we look at it. We don't have any way to relate light to anything we can handle, so we can only say that we need two competing and otherwise mutually exclusive models to explain it. It sucks, but that's just the way it works. --Jayron32.talk.contribs 11:56, 10 March 2009 (UTC)
The main motive of yur answer is that light is simply an energy whose propogation is undefined. Its properties are a mix of electro magnetic, wave and particle propogation.--Lightfreak (talk) 08:44, 12 March 2009 (UTC)
light
i have some doubts in the article "light".Please help me out with it.--Lightfreak (talk) 13:04, 9 March 2009 (UTC)
- You're really going to have to be more specific than that. Could you describe your doubts? -- Captain Disdain (talk) 13:27, 9 March 2009 (UTC)
thanks! I could not axactly understand which amonst all the theories was correct.If it was the particle theory then how come the first line itself states light as electro magnetic radiation.If light consists of photons then how come polarisation was observed? Hope you can help out.--Lightfreak (talk) 09:13, 10 March 2009 (UTC)
- See above. Light is not a wave or a particle. It behaves in certain situations like one or the other, but it isn't either. We don't have anything in the world we can handle with our hands which works well as a model for light, so we need these two mutually exclusive models to explain light in terms we can grasp; it doesn't mean light is one or the other, it just means that we need both to be able to put light in terms that our brains can work on... --Jayron32.talk.contribs 12:12, 10 March 2009 (UTC)
- It might help you to read my (long-ish) reply to the question just below this one...I think it explains the wave/particle mess a little more clearly. SteveBaker (talk) 14:23, 10 March 2009 (UTC)
The meaning of Frequency in physics
Usually c(transmission speed) = f(frequency)• w(wavelength) ;
However, if I, per second, send 3 photons(wave packets) of wavelength 1cm at the speed of light, there would be gaps between the wave packets, so the rule above above fails.
I feel insecure/unsure about this, and I have not succeeded in finding a measure covering the situation above.
Should there not be an explicit statement, that the wave packets should be immediately adjacent, for the rule above to work ?
Should there not be a special measure for the example above to work ?
83.226.97.214 (talk) 13:29, 9 March 2009 (UTC)
- You need to either think about light in terms of photons, or waves, not both. Combining the two interpretations is rather tricky. If you want to think it terms of wavelengths, do everything with waves, no photons. If you want to work with photons, think in terms of energy (E=hf). --Tango (talk) 13:36, 9 March 2009 (UTC)
- What would be the problem? There would be three separate "pulses" of light; each pulse would have its own frequency and wavelength (these would be dependent on the energy of the single photon, primarily due to the method you used to make those photons). If you wanted to, you could also "time-average" over a long period of time, and you would begin to see the repetitive nature of the pulses showing up as a frequency-component in your received spectrum (note that only special cases of light have a "single" frequency - most light is best described by a combination of frequencies - in your case, this would include both the individual photon frequency AND the 3-pulse-per-second pulse repetition frequency). The problem is that with only 3 photons per second, you would need to average many many time-cycles to show any meaningful "spectrum" wave-like behavior (because there is not a large amount of energy per pulse). All in all, this is a situation which is best treated exclusively with the particle model. Nimur (talk) 15:11, 9 March 2009 (UTC)
- Phrased another way, "gaps" in the spatial extent of the wave packet really just means that the individual photons do not interfere with each other. If you space the photons closer together, their wave-nature will cause them to interact. The result will be a different distribution of received photons at the receiver. This distribution is slightly random, but again, on the long-term average, it will be exactly described by the interference pattern of the wave representation of the individual photons. Nimur (talk) 15:13, 9 March 2009 (UTC)
- I think the OP is confusing then frequency of the photons (which is indeed related to the speed and wavelength through ) with the frequency of photon emission (3 photons per second in the example). Those are completely separate comcepts. The photons can have gaps, be contiguos, or overlaping. Dauto (talk) 16:07, 9 March 2009 (UTC)
- Forget light - because it's complicated. Think about sound. If I hit middle-C on the piano (well - let's make that be an 'idealised' piano..a music synthesiser that's set up to produce pure sine waves) and also hit the 'G' above that at the same time and hold them down - then there are two frequencies present in the resulting waveform - one is a 261Hz sine wave - the other is a 391Hz sine wave. The 'v = f . w' equation holds for each wave independently - so the wavelength of the two notes is different. The actual wave-shape is complicated because there is constructive and destructive interference going on...but we're all very happy with the resulting math.
- OK - now consider hitting just the middle-C key once per second for half a second each time - beep-beep-beep-beep...forever. You now have a 261Hz sine wave plus a 1Hz square wave. One modulates the other. This produces a vast number of harmonics and other frequencies - each with it's own wavelength and frequency - all moving at the same speed. The shape is now rather simple to look at on an oscilloscope or something - but it took a lot of frequencies to reproduce that shape. However, the mathematics are well-behaved.
- Now - if you buy a brand new piano - pound the key three times - and then (very quietly) smash the piano into a million pieces so it'll never play again - then you have another wave modulating the first two which has a frequency of zero hertz(!) and an infinite wavelength (because it'll never repeat)...this gets really impossible to think about! At that point you have to stop thinking about your performance as a sum of frequencies and start thinking of the individual notes as wave-packets - like photons - and you have to use different mathematics to handle it in order to avoid the ugly infinities that pop up. Nothing really different happened - it's just that the math falls apart when the frequency hits zero.
- Similar thinking helps you get through the 'wave/particle' thing. If your photons come in a steady, uniform stream then it's not a problem to think in terms of continuous frequencies of light. When they come less frequently - then you have to think of pulses of light - and when there are just three of them - the mathematics of 'waves' stops being very useful - and you're better off thinking of particles. SteveBaker (talk) 18:12, 9 March 2009 (UTC)
- SteveBaker's excellent explanation misses the target by a hair. Even when dealing with individual isolated photons, it is essential to keep their wavelike nature in mind. Individual photons still behave in a wavelike manner suffering (for instance) interference, difraction, and refraction. Dauto (talk) 19:42, 9 March 2009 (UTC)
- Yes, indeed - but that's true of sound too. Even if you buy that new piano, hit middle-C then destroy it so it never plays another note...you can still talk about "the frequency of the note" - even though it has some components that are mathematically tough to deal with as waves. The sound from that one note still behaves like a wave - it'll refract through slits (on the scale of sound waves, a doorway makes a pretty good slit!) - and it'll echo off of distant mountains...just like a wave. But you can also talk about "the note" as if it were a particle because it's confined in space and time. SteveBaker (talk) 14:18, 10 March 2009 (UTC)
- It's not that simple. The photons are produced and detected one at a time. That's why they are considered particles. If you emit one photon and observer 'A' detects it, observer 'B' won't be able to detect it as well because there was only one photon to begin with. If you play one piano note, everybody in the room will hear it. The note isn't a particle, really. Dauto (talk) 16:01, 10 March 2009 (UTC)
- Not true. See Double-slit experiment. You can set up situations where a single particle, even a particle with a measurable rest mass like an electron, can be emited one at a time and still display wave-like properties. You can actually get one photon to behave like a wave... --Jayron32.talk.contribs 16:58, 10 March 2009 (UTC)
- I'm not sure if you were talking to me, but if you were, I don't know where you got the idea that I thought othewise. Dauto (talk) 17:06, 10 March 2009 (UTC)
- Sorry. I misinterpreted your comment. I thought you meant that light only had wavelike properties in bulk and that single photons only had particle-like behavior, which is of course not the case. My bad. --Jayron32.talk.contribs 22:35, 10 March 2009 (UTC)
Heparin and Bleeding Tests
Heparin acts by decreasing the activity of thrombin, the common endpoint of coagulation cascades
Why then, does it only affect pTT blood times (intrinsic pathway), and not the PT(extrinsic pathway)?
--Cacofonie (talk) 15:40, 9 March 2009 (UTC)
- Actually it does affect PT. However it only has a mild and unreliable effect. Axl ¤ [Talk] 18:49, 9 March 2009 (UTC)
SNOMED-CT abbreviations
I've been looking at SNOMED. I see that it has a lot of terminology. Does it have abbreviations? For example, does it have "tab = tablet" and "hctz = hydrochlorothiazide"? -- kainaw™ 17:47, 9 March 2009 (UTC)
- The use of abbreviations in medicine, though widespread, is fraught with danger through misinterpretation. Recognised systems of nomenclature and classification such as SNOMED don't use abbreviations because they detract from the clarity those systems are attempting to achieve. Mattopaedia Have a yarn 11:23, 11 March 2009 (UTC)
- The point of a nomenclature with abbreviations is to remove the abbreviations in existing medical records to remove misinterpretation. If a doctor types hct by accident when he means hcl, having it automatically expand to hydrochlorothiazide instead of hydrochloride will increase the possibility that the doctor will realize his mistake. -- kainaw™ 13:25, 11 March 2009 (UTC)
Communicating meaning with distant space aliens - no pictures allowed
This discussion began at Wikipedia:Reference desk/Language. -- Wavelength (talk) 19:05, 9 March 2009 (UTC)
Imagine that the two-way communication of signals between us and some space-aliens orbiting a distant star has been established. They are blind and immobile and cannot use pictures or diagrams of any kind. There is no pre-established code or alphabet. While I can imagine that eventually the meaning of mathematical or logical symbols might eventually be established (for example tranmitting many messages such as "..+..=...." would give meaning to + and =), would it be possible to eventually build up enough meaning from a zero base so that in time they would understand what was meant by the message "Last thursday my Uncle Bill went to the supermarket"? Helen Keller springs to mind. 89.240.206.60 (talk) 02:01, 8 March 2009 (UTC)
- I don't see how it's possible to go from 2+2=4 to any non-math concept. Remember, it was impossible to decipher hieroglyphics without help from the Rosetta Stone, even though they were written by human beings, and this would be n times worse (n >> 1). Clarityfiend (talk) 05:22, 8 March 2009 (UTC)
- Earth has blind, immobile animals called barnacles, and some humans have done research on how to talk with animals (http://www.howtotalkwithanimals.com/), but I have never heard of anyone attempting to communicate with a terrestrial barnacle. Instead of contemplating communication with alien barnacle-like creatures, why not ponder how we humans can communicate better with each other? -- Wavelength (talk) 06:45, 8 March 2009 (UTC)
- LINCOS was a whole elaborate language (developed at length in a book) based more or less around that premise (though I think there were some abstract mathematical images included)... AnonMoos (talk) 07:00, 8 March 2009 (UTC)
- H. Beam Piper's much-reprinted story Omnilinual has terrans cracking the Martian language by finding a periodic table. Unfortunately, the idea in the story simply doesn't work: the English names for common elements only make sense in the context of the history of science, not modern science (eg oxygen = 'acid-maker' and hydrogen = 'water-maker]; these are Graeco-Latin rather than English, but German for example translates the roots and still perpetuates the errors), so why assume that the Martian names would be meaningful? --ColinFine (talk) 18:51, 8 March 2009 (UTC)
- Is there a joke hidden in the misspelling of "Omnilingual"? —Tamfang (talk) 04:57, 10 March 2009 (UTC)
- For what it's worth, I coincidentally ran into the following article today ---> Pioneer plaque ... in which NASA scientists are, in fact, trying to communicate with distant space aliens ... albeit with the use of pictures. (Joseph A. Spadaro (talk) 22:20, 8 March 2009 (UTC))
The essential bottleneck to get through may be that of naming geometric shapes, such as a triangle. A triangle could then be used to build up other shapes. The triangle could be named after being identified by its mathematical properties. If however they have no sense of the spatial, then you are stuffed. 89.243.72.122 (talk) 23:56, 8 March 2009 (UTC)
- How can an organism distinguish between a random collection of perceptible stimuli and a purposeful collection of perceptible stimuli produced by intelligent design? How can it distinguish between a message and a non‑message?
- -- Wavelength (talk) 02:09, 9 March 2009 (UTC)
- Humans or even sheepdogs or bees seem to have no problems with doing that. And if we humans recieved a signal from a distant star in the form of the Fibonacci series or any other simple mathematical series, then that would indicate that the sender was an intelligent being. 89.242.94.128 (talk) 11:37, 9 March 2009 (UTC)
- The series should not be too simple, as then we could not be sure it was not generated by some nonsentient physical process. The Fibonacci sequence in particular is a very bad example, as it is known to appear in nature without any involvement of intelligence, see Fibonacci number#Fibonacci numbers in nature. — Emil J. 13:42, 9 March 2009 (UTC)
- Humans or even sheepdogs or bees seem to have no problems with doing that. And if we humans recieved a signal from a distant star in the form of the Fibonacci series or any other simple mathematical series, then that would indicate that the sender was an intelligent being. 89.242.94.128 (talk) 11:37, 9 March 2009 (UTC)
This fellow's research into a generalization of information theory that assumes no prior common language might be of interest, for a formal take on a specific variation of the question, which he calls "Universal Semantic Communication". The general strategy is to frame it as goal-oriented communication, which allows us to conclude that we've successfully communicated something when we can achieve some goal as a result of the communication faster than we would've been able to do without it. --Delirium (talk) 02:55, 9 March 2009 (UTC)
- It might be worth posting this question on the mathematics desk. I am sure that they would have ways of encoding mathematics that they would think recognisable (and going from simple operations to advanced formula). They might even have some insights in how to jump out of Mathematics. -- Q Chris (talk) 13:49, 9 March 2009 (UTC)
[The copied text ends here.]
- This reminds me of the book "Contact". Axl ¤ [Talk] 19:13, 9 March 2009 (UTC)
- (And actually, I believe the answer is in that very book. The aliens in the book send humanity a set of plans for building a massively complex machine. In the course of building it, our technology is pushed along towards theirs - and in the end, the machine makes it possible to communicate with them. It's left deliberately unclear whether the machine tells our hero what it's all about - or whether it physically transports her to their planet and lets them talk face-to-face. But in our case, we don't know how to do the latter - so we have to do the former. Tell them how to build a computer that can run a program we send them that will interact with them and tell them all about us. See my post below for more details about how you do that. Contact (the book, much more so than the movie) is quite the most well-thought-out alien contact story I've ever come across. If it happens - that's exactly what it'll be like. SteveBaker (talk) 22:12, 9 March 2009 (UTC)
- I'll admit I haven't read the book, only the movie, but if we send the aliens plans for a massively complex and expensive machine that does nothing but show them an image of their father while making some cryptic, but ultimately meaningless remarks, then I fully expect them to eventually show up with a fleet of warships to wipe us out. (Once their economy recovers from spending their GNP on a machine that doesn't do anything.) I hope that the book's story was a lot less stupid. APL (talk) 02:11, 12 March 2009 (UTC)
- (And actually, I believe the answer is in that very book. The aliens in the book send humanity a set of plans for building a massively complex machine. In the course of building it, our technology is pushed along towards theirs - and in the end, the machine makes it possible to communicate with them. It's left deliberately unclear whether the machine tells our hero what it's all about - or whether it physically transports her to their planet and lets them talk face-to-face. But in our case, we don't know how to do the latter - so we have to do the former. Tell them how to build a computer that can run a program we send them that will interact with them and tell them all about us. See my post below for more details about how you do that. Contact (the book, much more so than the movie) is quite the most well-thought-out alien contact story I've ever come across. If it happens - that's exactly what it'll be like. SteveBaker (talk) 22:12, 9 March 2009 (UTC)
- Sorry to hijack the question, but I don't quite agree that mathematics can be a universal language. See my question here. --99.237.96.33 (talk) 21:11, 9 March 2009 (UTC)
- Since all we can really send (at least at first) is numbers...probably binary numbers. It makes sense to start with numbers - move to arithmetic and then to algebra. But indeed - then what? What I'd hope to do would be to start to express ALGORITHMS - written in a computer programming language. That's not a big stretch from algebra and arithmetic. If you can teach them that - then you can hope that they would have the technology to automate the execution of such an algorithm...ie that they have computers. If they do - then you can progress to sending them a huge AI program that will allow them to experiment with communication at higher levels. If you're talking to a bunch of aliens who have somehow not invented computers of some kind - then we'd have to somehow encourage them by sending algorithms that are too complex to solve on paper and hope that they'd latch on to the need to automate this stuff somehow. But there is always the MASSIVE practical problem that in any likely scenario, the aliens would be perhaps 50 light years away. It would require an entire generation of humans to ask the aliens a question and get an answer back. So if we do manage to discover that they exist, I think we have to assume as little as possible about them and proceed as if they know as little as possible. So I'd send a MASSIVE message that starts with prime numbers (hopefully to get their attention), then counting, then arithmetic, algebra and algorithms - then a bunch of simple programming 'test programs' to ensure their computer works correctly - and finally as large and sophisticated a program as we can manage to divise for them to interact with - and as much data for it to work with as we can manage to send given the (likely very limited) bandwidth available. The hope would be that that within perhaps 110 years later (50 light years each way with 10 years for them to figure it all out) we'd get back a reply in the form of a massive program written in the same programming language as ours - plus as much data as they dare send. What happens next depends entirely on what they say. As I pointed out before - if what we get back is a blurry video of some complex interpretive dance plus the digital data describing the chemical odours given off by the participants...then we may be in a lot of trouble! SteveBaker (talk) 22:02, 9 March 2009 (UTC)
- You want to send ALICE as our ambassador? Could work, I guess! That message really would be enormous, though. It would take several days to send, at least, and we would need to send it multiple times to be sure they got it cleanly (no fancy error correctly codes possible, just simple repetition is all we have). --Tango (talk) 22:46, 9 March 2009 (UTC)
- Yeah - exactly. A digital ambassador/teacher - perhaps it could also learn and have them transmit the results it garners back to us. SteveBaker (talk) 03:38, 10 March 2009 (UTC)
- In all likelihood we would not be trying to teach the aliens anything. It is overwhelmingly likely that they would be more advanced than us and our job would be to listen and try and interpret what they say. I think that also comes from Carl Sagan (Cosmos?) but can't be sure - too long since I read him. SpinningSpark 23:04, 9 March 2009 (UTC)
- Yeah - but if they're much smarter than us then they may consider our best efforts to be about as annoying as a yapping dog. I think it's in our interests to share some of our best stuff with them. But opinions vary on that point. SteveBaker (talk) 03:38, 10 March 2009 (UTC)
- We need to teach them some kind of system of communication, though. Whoever starts the conversation has to do that bit, regardless of the relative levels of advancement - when it takes generations for a round trip, you can't waste the first one just saying "Hello". --Tango (talk) 23:15, 9 March 2009 (UTC)
- Yep - exactly. The first message really has to count - you may not live to hear the reply - but for sure you won't live to hear the answer if you need to ask a followup question after you hear what they have to say! SteveBaker (talk) 03:38, 10 March 2009 (UTC)
- You want to send ALICE as our ambassador? Could work, I guess! That message really would be enormous, though. It would take several days to send, at least, and we would need to send it multiple times to be sure they got it cleanly (no fancy error correctly codes possible, just simple repetition is all we have). --Tango (talk) 22:46, 9 March 2009 (UTC)
- If pictures were allowed in this, the first question could be do you own a pair of 3D polarised glasses? SpinningSpark 23:22, 9 March 2009 (UTC)
- Actually - that's PRECISELY the kind of thing you can't do. How do you know they have two eyes? How do you know that their eyes are insensistive to polarisation (as ours are) - if they are then polarised glasses might not be necessary - or they might not work. Our aliens may use some kind of radar or sonar for depth perception - and have just the one eye. So no - that would really suck as a way to talk to them. If you wanted to send them 3D images, you'd probably need to chop a 3D volume up into 'voxels' and transmit it like that...but it's not great. I have my doubts whether a 2D image would work either - if they do have a special 3D imaging organ - then perhaps they'll be completely unable to comprehend a 2D image? It's definitely a leap of faith to assume pictures will work. SteveBaker (talk) 03:38, 10 March 2009 (UTC)
- Life on Earth has various systems of perception, including various types of 2D and 3D ways of viewing the world. We can expect an alien biosystem to be similar (evolution tends to find things that fit niches very well, and different niches have different best systems), so hopefully they can conceive of a 2D image even if they don't personally see the world that way. --Tango (talk) 11:55, 10 March 2009 (UTC)
- If they see through the use of sonar, then it's almost certain that they don't have the concept of a 2D image. --Carnildo (talk) 00:48, 11 March 2009 (UTC)
- Did you read my comment? If they use sonar, but have studied other life on their planet that uses light, then they should be able to conceive of a 2D image. We can conceive of ETIs that use sonar despite not using it ourselves, why can't they conceive of ETIs that use light? --Tango (talk) 16:57, 11 March 2009 (UTC)
- We can concieve of ETIs that use sonar, sure, and ETIs that use sonar can concieve of creatures that use light, but does that mean they'll grasp all the consequences of using light? If your primary perception of the world is through reflected sound waves, it's hard to imagine that subtle variations in the surface chemistry of an object are important to the perception of the world. If your view of the world is inherently 3D, it's hard to imagine that the edge outline of an object viewed from a specific direction could be used to convey the shape of the object. --Carnildo (talk) 23:07, 11 March 2009 (UTC)
- Did you read my comment? If they use sonar, but have studied other life on their planet that uses light, then they should be able to conceive of a 2D image. We can conceive of ETIs that use sonar despite not using it ourselves, why can't they conceive of ETIs that use light? --Tango (talk) 16:57, 11 March 2009 (UTC)
- If they see through the use of sonar, then it's almost certain that they don't have the concept of a 2D image. --Carnildo (talk) 00:48, 11 March 2009 (UTC)
- Life on Earth has various systems of perception, including various types of 2D and 3D ways of viewing the world. We can expect an alien biosystem to be similar (evolution tends to find things that fit niches very well, and different niches have different best systems), so hopefully they can conceive of a 2D image even if they don't personally see the world that way. --Tango (talk) 11:55, 10 March 2009 (UTC)
- Actually - that's PRECISELY the kind of thing you can't do. How do you know they have two eyes? How do you know that their eyes are insensistive to polarisation (as ours are) - if they are then polarised glasses might not be necessary - or they might not work. Our aliens may use some kind of radar or sonar for depth perception - and have just the one eye. So no - that would really suck as a way to talk to them. If you wanted to send them 3D images, you'd probably need to chop a 3D volume up into 'voxels' and transmit it like that...but it's not great. I have my doubts whether a 2D image would work either - if they do have a special 3D imaging organ - then perhaps they'll be completely unable to comprehend a 2D image? It's definitely a leap of faith to assume pictures will work. SteveBaker (talk) 03:38, 10 March 2009 (UTC)
(Responding to Delirium on "Goal Orientated Communication") It's hard to see how that would be useful here. The method specifically requires interaction between the parties to succeed, the one thing thing we cannot have. My suggestion would be to first establish symbols for "yes" and "no". This could be done with the help of mathematical language. Having established a basic arithmetic, correct and incorrect equations could be stated followed by the yes/no symbols. This starts to give you a method of answering questions and is the door to real information exchange, but that's about as far as I've thought it through. SpinningSpark 23:19, 9 March 2009 (UTC)
- That is of course assuming a semantic equivalence between false and no; and true and yes. It seems plausible that some meaningful semantics might not follow such a convention. For example, a large chunk of human history and culture is founded on the affirmation of patently false ideas. Nimur (talk) 23:49, 9 March 2009 (UTC)
- Nonsense! We send a 'count' sequence in binary to establish that we're talking in binary and which bit is least-significant. Then we send a few dozen of the first prime numbers to kinda verify that this isn't a natural phenomenon...to provide examples of large numbers. Then we need to start with 1 @ 1 % 2 $ ... 2 @ 3 % 5 $ ... 9 @ 5 % 14 $ ... 2 & 2 % 4 $ ... 2 & 5 % 10 $ ... 10 # 5 % 2 $ ... 4 # 2 % 2 $. (I presume you figure that '@' is plus and '&' is multiply and '#' is divide - but you might not figure the point of the '$' and '%'. Then when we've done a few hundred examples, we go with 1 @ 1 % 4 ^ ... 2 @ 3 % 1 ^ ... 10 # 5 % 4 ^ ...and so forth. How long does it take to figure out that $ means TRUE and ^ means FALSE from that? I don't think that's hard at all - you can then express things like 'greater' and 'less' instead of '%' for 'equals' 1 @ 1 < 4 $ 1 @ 1 > 1 $. If you send enough examples (and you could send tens of thousands of them pretty quickly) - it would take a pretty stupid civilisation to not be able to figure it out. You can't build such a sensitive radio detector and not have a knowledge of basic arithmetic! Once you have that, you can say things like A @ B % B @ A $ ... and start introducing algebra. You'd probably want to use reverse-polish notation rather than infix in order to avoid the need to send parentheses...but that kind of thing ought to work for math, logic and (importantly) algorithms. You could send algorithms for factoring primes, calculating square roots, calculating pi...and I think any decent computer programmer could figure them out no matter how cryptic the symbology...although it might take you a while. But the degree of algorithmic sophistication it takes to describe an algorithm to factor primes is plenty good enough for describing a simple AI program. It's definitely do-able if the aliens are at least as smart as us. SteveBaker (talk) 04:00, 10 March 2009 (UTC)
- How do you get across the concept of a variable? I guess you need to do it with lots of simple examples. "A:=1, A+1=2", "A:=7, A+2=9", "A:=1, B:=2, A+B=3". It really would end up being an extremely long message - it would take a lot of examples of each thing to make sure they've got it, they can't easily ask for clarification if there's one bit they just can't get their "heads" around. If you want to send multiple example programs, you're going to end up getting into the realms of years of transmission - although, if it takes 50 years for the message to get there, that might be reasonable. --Tango (talk)
- Nonsense! We send a 'count' sequence in binary to establish that we're talking in binary and which bit is least-significant. Then we send a few dozen of the first prime numbers to kinda verify that this isn't a natural phenomenon...to provide examples of large numbers. Then we need to start with 1 @ 1 % 2 $ ... 2 @ 3 % 5 $ ... 9 @ 5 % 14 $ ... 2 & 2 % 4 $ ... 2 & 5 % 10 $ ... 10 # 5 % 2 $ ... 4 # 2 % 2 $. (I presume you figure that '@' is plus and '&' is multiply and '#' is divide - but you might not figure the point of the '$' and '%'. Then when we've done a few hundred examples, we go with 1 @ 1 % 4 ^ ... 2 @ 3 % 1 ^ ... 10 # 5 % 4 ^ ...and so forth. How long does it take to figure out that $ means TRUE and ^ means FALSE from that? I don't think that's hard at all - you can then express things like 'greater' and 'less' instead of '%' for 'equals' 1 @ 1 < 4 $ 1 @ 1 > 1 $. If you send enough examples (and you could send tens of thousands of them pretty quickly) - it would take a pretty stupid civilisation to not be able to figure it out. You can't build such a sensitive radio detector and not have a knowledge of basic arithmetic! Once you have that, you can say things like A @ B % B @ A $ ... and start introducing algebra. You'd probably want to use reverse-polish notation rather than infix in order to avoid the need to send parentheses...but that kind of thing ought to work for math, logic and (importantly) algorithms. You could send algorithms for factoring primes, calculating square roots, calculating pi...and I think any decent computer programmer could figure them out no matter how cryptic the symbology...although it might take you a while. But the degree of algorithmic sophistication it takes to describe an algorithm to factor primes is plenty good enough for describing a simple AI program. It's definitely do-able if the aliens are at least as smart as us. SteveBaker (talk) 04:00, 10 March 2009 (UTC)
- That is of course assuming a semantic equivalence between false and no; and true and yes. It seems plausible that some meaningful semantics might not follow such a convention. For example, a large chunk of human history and culture is founded on the affirmation of patently false ideas. Nimur (talk) 23:49, 9 March 2009 (UTC)
- The time between when a civilization is able to dabble in intra-galactic communication and its own self-destruction can be measured in nanoseconds in cosmic time scales. Think virtual particles AЯE us! ;-) -hydnjo (talk) 23:54, 9 March 2009 (UTC)
- It's encouraging that so far we've been unable to find alien life in our solar system. If we did - then it would imply that life can form EXCEEDINGLY easily throughout the universe - and then the failure of SETI to find any of it would suggest that civilisations do indeed self-destruct before they are capable of interstellar communications. But so long as life seems rare - there is at least the hope that it's so rare that we shouldn't be surprised at the lack of SETI results. If we do find life on Mars - we should worry about our futures...the search is more than mere curiosity! SteveBaker (talk) 04:15, 10 March 2009 (UTC)
- I read an article once that took that point of view, but I don't buy it. It's assuming that a lack of ETIs talking to us implies a lack of ETIs, which I don't think is the case. There are plenty of reasons why an ETI might not be broadcasting signals we can receive (which is basically just signals sent intentionally) - for example, they may have decided that it's not worth trying to talk to people when you have a 100+ year round trip (particularly if they have a shorter lifespan than us, and I would put the odds of that at 50%, since I have no reason to assume our lifespan is longer or shorter than the average for intelligent beings). They may be devoutly religious and reject the notion that there could be life on other planets. They may have decided to broadcast on completely different frequencies than we expect. Etc. Etc. Etc. --Tango (talk) 14:06, 10 March 2009 (UTC)
- Certainly it's not a definite thing. But this is an area where we currently have zero data - we don't know how many aliens there are - what their propensity/ability to communicate is - or even how common life is at the microbial level! But the balance of probability swings dramatically if we find other life (albeit simple) on our own doorstep. At that point, the default assumption changes from "we have no idea how common life is" - to "life is probably extremely common indeed"...although that could still be an incorrect assumption. And at that point, where we'd strongly SUSPECT that life is common - we'd have to start being concerned that so little of that presumed life is able to talk to us.
- As for the frequencies they might transmit on...this has been thought about rather carefully - and there are only so many ranges of frequency where communication at these distances is practical. For example - you'd want to pick a frequency that wasn't being naturally emitted in vast quantities by the star you are orbiting around - because your signal would get lost in the noise. You'd also want to avoid frequencies that would be more strongly absorbed or scattered by interstellar gasses and dust. You also need frequencies that can be produced and detected with a manageable size of antenna - and where the amount of energy required to produce the signal isn't insane. When you add up all of the constraints, the range of frequencies can be narrowed to a fairly manageable set...and that's essentially what SETI has done. SteveBaker (talk) 11:36, 11 March 2009 (UTC)
- Not "able", "willing and able". Just because they aren't talking to us doesn't mean they can't. --Tango (talk) 16:55, 11 March 2009 (UTC)
- I read an article once that took that point of view, but I don't buy it. It's assuming that a lack of ETIs talking to us implies a lack of ETIs, which I don't think is the case. There are plenty of reasons why an ETI might not be broadcasting signals we can receive (which is basically just signals sent intentionally) - for example, they may have decided that it's not worth trying to talk to people when you have a 100+ year round trip (particularly if they have a shorter lifespan than us, and I would put the odds of that at 50%, since I have no reason to assume our lifespan is longer or shorter than the average for intelligent beings). They may be devoutly religious and reject the notion that there could be life on other planets. They may have decided to broadcast on completely different frequencies than we expect. Etc. Etc. Etc. --Tango (talk) 14:06, 10 March 2009 (UTC)
- It's encouraging that so far we've been unable to find alien life in our solar system. If we did - then it would imply that life can form EXCEEDINGLY easily throughout the universe - and then the failure of SETI to find any of it would suggest that civilisations do indeed self-destruct before they are capable of interstellar communications. But so long as life seems rare - there is at least the hope that it's so rare that we shouldn't be surprised at the lack of SETI results. If we do find life on Mars - we should worry about our futures...the search is more than mere curiosity! SteveBaker (talk) 04:15, 10 March 2009 (UTC)
- First give either axioms or examples to explain 4-dimensional euclidean geometry (three dimensions of space and one of time), and use that to make videos. Unlike the kind of videos we have, which show what we see and thus only have 3 dimensions (including time) these will show things as they are and thus aren't prohibited. Even if they're blind, they live in four dimensions of space time and must adapt to understand accordingly. From there, it's just a matter of giving them enough to understand our culture well enough to know who your uncle Bill is, what a supermarket is, and when last Thursday was. — DanielLC 06:05, 10 March 2009 (UTC)
- Your question, as you asked it, already would include that we had a lot in common with those aliens. The fact that we know there's another species out there means that we have received some evidence of its existence. Our idea of what is and isn't "intelligent" tends to be very closely modeled on humans. For an omnivore like humans that's useful to avoid ethical problems with eating other living things. The aliens need to be at least as "bright" as humans are. They can't be much more advanced or too different either, because they'd have to to chose the same methods to communicate (e.g. electromagnetic waves within a certain frequency band). They would also have to be a bit more advanced or it is unlikely that they'd expend the energy and other resources required to broadcast, rather than just listen (as we did with SETI). Some of the mathematical solutions even assume that their methods of describing their world evolved along the same path as ours. They should also not turn over generations (lifetime) much faster than we do. Longer would actually be preferable. If we can indeed find a species that fits the bill, it would be best to determine mutual needs and benefits and then base our attempt on that. Is there something that we have, and can spare, that they need? Before you get to communicating at a level that you are heading for with "uncle Bill" that would also require both civilizations to convince themselves that the other doesn't pose any threat. With interstellar communication and the current human population aliens would face the problem that we would change a lot from one message to the next. Political leaders, country boundaries, goals, ethics, all that only follows some general trends with lots of fluctuation. Depending on whether they're optimists or pessimists we are a species that is rather destructive to itself and it's environment or Mostly harmless with violent episodes. In the millenia it would take for communication to reach the "small talk" level it is highly unlikely that your phrase would still make sense even to the humans. For casual communication dropping a couple of individuals into the other's environment would work best. Learning the varied meaning of words and phrases of a foreign language is difficult enough even for humans who at least are of the same species and from the same planet (Your particular aliens could spend months trying to find out the significance of thursday without capital T :-) 76.97.245.5 (talk) 08:13, 10 March 2009 (UTC)
- The fact that we know there's another species out there means that we have received some evidence of its existence. - Yes, but that might (for example) be as a result of detailed spectrographic analysis of their planet's atmosphere. That's the kind of thing NASA plan to do in the wake of whatever findings we get from the Kepler Mission that just recently launched. We may not have had a message from them yet. There are several sci-fi examples (Star Trek, for example) where all of the intelligent species of the galaxy have already formed a 'club' and are communicating with each other on narrow-beam links - but they've agreed on a 'prime directive' that says that nobody talks to newly evolved species like us until we make the first move and indicate a willingness to talk. I imagine there were quite a few tribes in Africa (and certainly still some in South America) who wish the 'advanced' civilisations on this planet had been following such a policy over the past few centuries!
- The aliens need to be at least as "bright" as humans are. - Probably. But we could also envisage a situation such as in that god-awful movie Idiocracy - where they were once really smart but have been dumbed-down by their technology to the point where they don't understand it anymore. It seems unlikely - but I suppose it's possible. In that case, I suppose we end up talking to their computers not to the aliens themselves - who just see the results in cartoon-form inserted into reruns of 'The Little Mermaid'.
- They can't be much more advanced or too different either, because they'd have to to chose the same methods to communicate (e.g. electromagnetic waves within a certain frequency band). - Why? If they are super-intelligent, they might deliberately toss out their tachyon intergalactic-internet and send us slow old radio signals because they are smart enough to have analysed OUR atmosphere remotely and they see none of the side-effects of advanced tachyon technology. (Or whatever it is). It's definitely not impossible that smart aliens would dumb-down to baby-talk when they communicate with us.
- They would also have to be a bit more advanced or it is unlikely that they'd expend the energy and other resources required to broadcast, rather than just listen (as we did with SETI). - Again, that's likely to be true - but perhaps they simply have different priorities. If (for example) they know that their sun is going to explode in 1000 years and they have no way to avoid that fate - they might rev up interstellar communications technology as either a last-ditch/last-hope way of getting some super-advanced lifeforms to somehow help them out...or they might simply want to send us their equivalent of Wikipedia as a way for their species to be remembered and not have died in vain. If we (at our technology level) decided that we wanted to build a radio transmitter with the power to reach nearby stars - we could probably do it in 5 years. We simply don't have that as a priority right now.
- Some of the mathematical solutions even assume that their methods of describing their world evolved along the same path as ours. - That's a tough sell. It's hard to believe that at least basic mathematics and logic aren't universal. Sure, they may never have stumbled on Godel's theorem - or the travelling salesman problem - but I'd be really surprised if they couldn't add, subtract, multiply, divide, compare and do the basic operations of (say) a Z80 computer. If they've reached that level in mathematics - then we can talk.
- They should also not turn over generations (lifetime) much faster than we do. Longer would actually be preferable. - Why? I don't see that as a determining factor. We have generations that are too short for interstellar communications within a single generation - but it doesn't stop us having a passionate interest in doing it (consider the $600M we just spend on Kepler - who's sole purpose is to look for planets that might harbor life that we could maybe talk to...but not within the lifetimes of any of the people who designed, launched or paid for that mission).
- If we can indeed find a species that fits the bill, it would be best to determine mutual needs and benefits and then base our attempt on that. - There is no time! If we want to find out ANYTHING about them - we have to send everything we want to send in one shot...wait a hundred years...and see what they tell us in return. We can't afford to tell them all of our basic arithmetic and say "Tell us if you understood all that - and if you do, we'll send you some more!"...because we'd get old and die before they said "Yes". We have to send as much as possible in that first shot - and hope that some of it 'sticks'.
- Is there something that we have, and can spare, that they need? - Since physical contact is likely to be impossible (or at least many centuries away), the only thing we can send or get in return is information. Since information costs almost nothing to duplicate - we can "spare" all of it. Because the round-trip time is so long, we have to send it all without knowing which of it they need. But in terms of haggling over the terms of an information exchange ("We'll tell you the secret of quantum cryptography if you'll tell us how you make high density computer chips")...that's not gonna work. Firstly, lying and cheating is far too easy - secondly, enforcing a 'payment' is impossible, thirdly, haggling takes too long. All you can hope is that by sending everything you can think of - they'll be grateful enough to send us everything they can think of in return. But there are certainly no guarantees here.
- Before you get to communicating at a level that you are heading for with "uncle Bill" that would also require both civilizations to convince themselves that the other doesn't pose any threat. - being 50+ light years away - and yet not already on our doorstep 1000 years ago - is enough to convince me that they don't pose a threat. If they are smart enough to overcome that hurdle - then there is probably nothing we can tell them that they don't already know.
- With interstellar communication and the current human population aliens would face the problem that we would change a lot from one message to the next. - Yes. That's a problem. But there is no solution - we either do it or we don't. Look at our situation 100 years ago - and some of our views on equality and fairness have changed DRAMATICALLY over that period. We'll certainly change again over the next 100.
- For casual communication dropping a couple of individuals into the other's environment would work best. - but that's virtually impossible. The only thing we can send in a reasonable time-scale is information. That's PRECISELY why I advocate teaching them a simple programming language (easily done with basic math) - and then sending them an Artificial Intelligence program with as much of "us" in it as possible. Done right (and I'll admit that our AI techniques won't be up to doing that for another 50 years) - that would be exactly like sending one of us into their environment - except that we can send that artificial human mind at the speed of light instead of in a slow old rocket-ship. (Which we also won't know how to do for AT LEAST 50 years - and in fact may find to be impossible).
- Learning the varied meaning of words and phrases of a foreign language is difficult enough even for humans who at least are of the same species and from the same planet (Your particular aliens could spend months trying to find out the significance of thursday without capital T :-) - yes, but just as a human child can learn language in a couple of years just by listening and babbling back - so our AI software can first learn to speak 'human' then (when it gets to their world) - learn to speak (or flash or fart) their language. Once it knows both, it can be our ambassador to them and can advise them on what we'd like them to send us back in return.
- Really - the approach of sending them a big piece of AI software is the ONLY way to make this happen - and it's quite do-able. SteveBaker (talk) 14:06, 10 March 2009 (UTC)
- I recently read the serial "A New Order of Things" by Edward M. Lerner. He takes that approach in the story. AI "Trade Agents" are sent to the other worlds, when run on an appropriate computer they decrypt themselves and negotiate the trade of information between the worlds. (He discusses it briefly here.)
- Of course, it helps that, in the story, the inhabited systems are Centauri, Barnards Star, etc. We should be so lucky.
- (As an aside, in the story Humans are at a slight disadvantage because we have so much information freely available over the Internet. (Which, Apparently, the AI agents are given access to.) Wikipedia may be weakening our bargaining position with alien AIs. Just throwing that out there.) APL (talk) 02:04, 12 March 2009 (UTC)
March 10
blood alchohol content
Can you give blood while you are wasted, and if you do, does the guy getting the transfusion end up with the hangover? 12.216.168.198 (talk) 00:06, 10 March 2009 (UTC)
- If you are obviously drunk, I doubt anyone would take your blood - it would be reckless. If you are less obviously drunk then they would probably discover it when they screen the blood (which they always do) and wouldn't give it to anyone. They might use it for other purposes, or they might just throw it away. --Tango (talk) 00:45, 10 March 2009 (UTC)
- The giving of blood is always (well almost always) accompanied by screening to determine the donor's safety as well as the recipient's safety. The donated blood undergoes testing (the little test tubes on the side of the pouch) for Hepatitis B, Hepatitis C, HIV and syphilis. If you are wasted, the medical folks wouldn't want to go to all that trouble. You'd be given some orange juice and some crackers and be sent on your way - drunkards are the easiest to spot as they show up frequently. In any event, the usual transfusion of one pint of blood would become diluted with the existing blood (about ten pints) and thus would be its effect. -hydnjo (talk) 00:54, 10 March 2009 (UTC)
- Hydnjo didn't say so explicitly, so I will: donated blood is not tested for its alcohol content. You're unlikely to be allowed to donate if you show up drunk at the blood center. However, if you are a donor that is contacted outside of ordinary blood center opening hours, because you have a special blood type or HLA type that a specific patient needs, you would probably be allowed to donate even if you had consumed a moderate amount of alcohol. The alcohol would be diluted even more than hydnjo suggests, as it would not just stay in the blood, but enter the extracellular fluid as well. --NorwegianBlue talk 23:08, 11 March 2009 (UTC)
Rainbows
There are several things I have always wondered about rainbows. Can they ever be in the opposite color order (i.e. Violet, Indigo, Blue, Green, Yellow, Orange, Red instead of vice versa like normal), such as from an unusual angle? Is there really an "end" to the rainbow? Are Infrared and Ultraviolet actually on the rainbow, but invisible to humans? --76.212.103.145 (talk) 01:22, 10 March 2009 (UTC)
- Yes about the opposite order, see our rainbow article to read all about that part of your question. It says that "More rarely, a secondary rainbow is seen, which is a second, fainter arc, outside the primary arc, with colours in the opposite order, that is, with violet on the outside and red on the inside." -hydnjo (talk) 01:40, 10 March 2009 (UTC)
- ...and yes (in principle) about the IR and UV - although it's possible that some of that light is absorbed by the rain droplets instead of being refracted...but certainly SOME UV and IR must be there. Rainbows are actually complete circles - but the ground kinda gets in the way of seeing all of them. From high altitude aircraft and in other special situations, you can actually see full circles. SteveBaker (talk) 03:12, 10 March 2009 (UTC)
- If you're ever in Maui, you can see the complete circle of a Rainbow when standing on Haleakala (assuming the time of day and cloud cover are just right). Someguy1221 (talk) 08:53, 10 March 2009 (UTC)
- Maui eh? Could I request some funding from the WikiMedia foundation to test that? I might need to be there for a couple of weeks so that the conditions will definitely be right. SteveBaker (talk) 13:04, 10 March 2009 (UTC)
- But how do you expect to drive your car full of gold to Hawaii ? :-) StuRat (talk) 17:33, 10 March 2009 (UTC)
- With regard to the 'end of the rainbow' part of the question... No, because a rainbow is not an object as such. It's more like a reflection. If you are looking right at a rainbow the sun will always be behind you. So if you are looking at a rainbow and so is someone else who is standing a mile away, you will both see the rainbow in different places.91.111.86.221 (talk) 21:39, 10 March 2009 (UTC)
Eye-testing telescopes?
Is there some sort of system for qualifying the end-result image from a telescope/lens? I often hear the quality of lenses (such as the mirrors in HST, and newer telescopes) in terms of the accuracy of the actual atoms of the lens, or the "closeness to spherical perfection", but post-processing to increase accuracy/resolution is obviously going to factor in to the final quality of the image. Is there some sort of standard "eye test" for telescopes? 219.102.220.90 (talk) 01:34, 10 March 2009 (UTC)
- I'm not sure if it's what you are looking for, but Adaptive optics (especially the external links) and Shack-Hartmann might be a start. A google search seems to yield more in depth information such as on this page. Much of the technology originally developed for measuring telescope optics has now been adapted for use in providing customized laser eye surgery, so you will find a mix of references to the two fields. -- Tcncv (talk) 05:32, 10 March 2009 (UTC)
- The Foucault test (AKA knife edge test) is a simple way to test the quality of a telescope's mirror. I don't know what test can be used for a lens. Dauto (talk) 06:15, 10 March 2009 (UTC)
- The Strehl ratio is often used to characterize the optical performance of telescopes. -- Coneslayer (talk) 14:06, 10 March 2009 (UTC)
Great, I found my answer (multiple actually) within the links. Thanks! 219.102.220.90 (talk) 23:51, 10 March 2009 (UTC)
Bananas
Do greener bananas have more vitamins/minerals/nutrients in them than a yellow banana? Basically, do they lose their nutritional value as they ripen? Dismas|(talk) 03:00, 10 March 2009 (UTC)
- Bananas are usually shipped green and ripened by exposing the fruit to ethylene gas so that consumers find fruit that meet the desired grade on the retailers "ripeness chart". The major changes during ripening involve starch being converted to sugar. The fact that the chlorophyll in the peel is changed can be ignored for bananas because we don't eat the peel. Minerals are pretty hardy so you can expect them to remain at the levels the fruit had when it was picked. What those levels are depends on the soil, the health of the plant and a couple of other factors. Vitamins are more sensitive. Plant vitamin A isn't metabolized very efficiently anyway, so I wouldn't worry too much about that. Some of the Vitamin B will be used up in the conversion of starch to sugar, but values you find like in our article are based on ripe bananas anyway. Ripening makes them easier to digest, so some of the nutrients will be more accessible to the body. Too tired to go through the list, looking at the label at banana may help. Nutrient content of natural fruit varies anyway. I doubt any changes during ripening would have a bigger influence than that. 76.97.245.5 (talk) 05:14, 10 March 2009 (UTC)
- Besides, who wants to eat green bananas? Dauto (talk) 15:51, 10 March 2009 (UTC)
- Thanks guys, now I can't get This Frigging Song out of my head. Beautiful... --Jayron32.talk.contribs 16:53, 10 March 2009 (UTC)
- You could listen to Fried Green Tomatoes (soundtrack), instead. StuRat (talk) 17:21, 10 March 2009 (UTC)
- So, to summarize, don't eat green bananas, as ripe bananas have plenty of nutritional value and won't be nearly as likely to make you sick. StuRat (talk) 17:29, 10 March 2009 (UTC)
- Thanks, but I actually prefer green bananas. Dismas|(talk) 18:07, 10 March 2009 (UTC)
- Just don't confuse them with plantain, which isn't edible raw until really ripe! --TammyMoet (talk) 19:43, 10 March 2009 (UTC)
- Green Eggs and Ham Anyone? cheers, 10draftsdeep (talk) 21:32, 10 March 2009 (UTC)
Encoder for remote application
please tell about the encoders that are used in remote application —Preceding unsigned comment added by Teja45 (talk • contribs) 05:29, 10 March 2009 (UTC)
- You will have to be more specific regarding what you mean by "encoder". And you can expand on what "remote application" is while you're at it. -- Tcncv (talk) 05:41, 10 March 2009 (UTC)
- I use gzip when I can, whether my application is remote or local. Nimur (talk) 13:53, 10 March 2009 (UTC)
- It's possible the original question was about television remote control electronics? The encoding, or modulation, varies for each manufacturer and model series. Nimur (talk) 02:38, 11 March 2009 (UTC)
- I was thinking it might have something to do with using an Enigma machine in a region where there was no electricity. -- Tcncv (talk) 03:25, 11 March 2009 (UTC)
- Maybe it's about online applications using remote procedure calls? Microsoft suggests using one of Internet Information Services Security, SSL, or a proxy server controlling which machines can access RPC.[31] This is a fun guessing game! —Preceding unsigned comment added by Maltelauridsbrigge (talk • contribs) 16:42, 11 March 2009 (UTC)
Effect of heat on the weight of gold?
What is the effect of heat on the weight of gold? Does the weight of gold decrease with heat or it remains the same.Sathyass (talk) 10:50, 10 March 2009 (UTC)
- Weight is the force on an object due to gravity, and based upon the mass of an object. The mass of gold will not change if you heat it up or cool it down, so the weight should stay the same. Then again, I haven't got a degree in anything like this yet, I'm just applying stuff I know. —Cyclonenim (talk · contribs · email) 11:06, 10 March 2009 (UTC)
- Actually, any closed system will increase in mass when heated, due to mass-energy equivalence (specifically, Mass-energy equivalence#Practical examples), but the actual change in mass will be pretty pathetic, right up to temperatures that will bring the gold to near vaporizing. I specifically recall that very delicate attempts to measure the change in mass of a heating crystal to have failed due to the thermodynamic noise exceeding the expected change in mass. I'm not sure it's ever actually been measured. Someguy1221 (talk) 11:14, 10 March 2009 (UTC)
- So what are you saying it happens even though it can't be experimentally observed? What sort of mass does this heat become? As I understand it mass energy transformation phenomenon applies only to nuclear transformations. Heat to mass sounds fully theoretical based on the experimental results you described.--OMCV (talk) 11:37, 10 March 2009 (UTC)
- Mass/energy applies to everything and heat exists in a solid as energy particles called phonons, the mechanical vibration equivalent of a photon of light. Putting in some figures, the specific heat of gold is 0.2291 kJ/Kg-K and its meting point is 3129K. The heat contained in 1kg of gold at its melting point is 0.2291x3129=716.9kJ. The mass equivalent of that is 716.9x103/C2 = 7.97x10-12kg, about eight billionths of a gram. You won't measure that on your bathroom scales, or even your weightwatchers scales. SpinningSpark 12:05, 10 March 2009 (UTC)
- However, if someone has ten tons of gold they could lend me, I think I could get this experiment to succeed as the mass increase would then be in the μg range. SpinningSpark 12:22, 10 March 2009 (UTC)
- We should consider putting it in the trunk of a very small car and driving very fast to see if kinetic energy will also make it heavier! Actually, I have the right car(s) for doing that in - so just send me half of the gold and we can do both tests at the same time. SteveBaker (talk) 13:01, 10 March 2009 (UTC)
- However, if someone has ten tons of gold they could lend me, I think I could get this experiment to succeed as the mass increase would then be in the μg range. SpinningSpark 12:22, 10 March 2009 (UTC)
- Mass/energy applies to everything and heat exists in a solid as energy particles called phonons, the mechanical vibration equivalent of a photon of light. Putting in some figures, the specific heat of gold is 0.2291 kJ/Kg-K and its meting point is 3129K. The heat contained in 1kg of gold at its melting point is 0.2291x3129=716.9kJ. The mass equivalent of that is 716.9x103/C2 = 7.97x10-12kg, about eight billionths of a gram. You won't measure that on your bathroom scales, or even your weightwatchers scales. SpinningSpark 12:05, 10 March 2009 (UTC)
- So what are you saying it happens even though it can't be experimentally observed? What sort of mass does this heat become? As I understand it mass energy transformation phenomenon applies only to nuclear transformations. Heat to mass sounds fully theoretical based on the experimental results you described.--OMCV (talk) 11:37, 10 March 2009 (UTC)
- Actually, any closed system will increase in mass when heated, due to mass-energy equivalence (specifically, Mass-energy equivalence#Practical examples), but the actual change in mass will be pretty pathetic, right up to temperatures that will bring the gold to near vaporizing. I specifically recall that very delicate attempts to measure the change in mass of a heating crystal to have failed due to the thermodynamic noise exceeding the expected change in mass. I'm not sure it's ever actually been measured. Someguy1221 (talk) 11:14, 10 March 2009 (UTC)
- No, gold doesn't become heavier when it gets hotter. What you are probably thinking of is that (like most materials), it EXPANDS when it gets hotter. But as it gets bigger - so it also gets less dense - and because weight is dependent on size multiplied by the density - the two things exactly cancel out and your gold stubbornly DOES NOT increase in weight. The effect the previous posters have been babbling on about it quite utterly negligable and someone needs to kick them in the shins and tell them to shut up and not confuse the questioners. SteveBaker (talk) 13:01, 10 March 2009 (UTC)
- Steve, you're not suggesting we deny scientific fact just because it has subtle complexities? The above effects are put in context (the word "negligible" was used; and quantitatively, the numbers came out to 1 part in a trillion). The mass-energy equivalence does exist, even though it is fairly negligible, and to deny it for the sake of simplicity is disingenuous. Nimur (talk) 13:58, 10 March 2009 (UTC)
- It's a matter of APPROPRIATE detail. We could whitter on all night about how the planet loses a little mass due to the transfer of energy from everything else into the gold so the earth loses mass and that reduces it's gravitational pull....yeah, yeah, very clever, I guess it allows you to strut your Physics 101 stuff - but it's a completely, totally UTTERLY useless answer to give to someone who came here to ask a simple question and get a simple, straightforward answer. Which is "NO!!" Everything beyond that is pseudo-intellectual bullshit. At the level of heat that you can get gold up to without it boiling away, the gains from mass/energy equivelence is VASTLY less than the amount of additional gold evaporating off the surface - or rubbing off on the surface it's resting on or...any number of other irrelevent things. An OP who has to actually ask this question clearly doesn't know enough physics to understand your ridiculous answers. You AREN'T telling the WHOLE story because it's essentially impossible to do so - you arbitarily cut off the approximation at some point...and that point was WRONG for the degree of complexity demanded by the questioner. All you'll do is end up convincing our OP that gold does indeed get heavier when you heat it up - which is BULLSHIT at any conceivable useful level of description. If you guys can't answer questions appropriately - then don't answer them. Were here to help people not show off our arcane knowledge of the utterly irrelevant. SteveBaker (talk) 23:16, 10 March 2009 (UTC)
- Steve you are completely wrong; you are drawing an awful distinction between people. Saying that some are to foolish to be able to take a straight answer, and that we have to dumb it down for them. The fact is the original poster as a question to which the answer "yes, but it is negligible", since that is the answer we should not say no. It is extremely arrogant of you to dismiss the questioner as too foolish to understand the full answer. And even if that is the case, it is better for them to know there is a complex answer that they dont understand; rather than believing in a false simplification that is not true. The fact is the question gives no guidance as to the appropriate level of detail to answer at, and so we should not assume that they are stupid. Your condescending nature does grate on some users of this desk. —Preceding unsigned comment added by 129.67.37.225 (talk) 12:16, 11 March 2009 (UTC)
- (ec) It depends on on precisely how you want to define weight. If we take it as, the magnitude of the gravitational force on an object, then the discussion above has reached the correct result. The increase in thermal energy corresponds to a (vanishingly small) increase in mass, leading to a corresponding increase in the gravitational attraction between Earth and the gold.
- On a more practical level, the apparent weight of the material – the net downward force experienced by the gold while it sits at rest on the Earth's surface, and what you would measure if the gold were sitting on a very sensitive balance – would actually decline slightly. As the temperature of the gold increases, so too does its volume. By Archimedes' principle, the gold will displace a bit more air, reducing very slightly its apparent weight. TenOfAllTrades(talk) 13:18, 10 March 2009 (UTC)
- This is probably the most relevant effect. Hot materials could create interesting convection patterns, and those will interfere with whatever sensitive balance or scale you use to measure the object. These will probably dwarf any of the effects due to mass-energy equivalence. But, if the scale were in a vacuum, those effects would be negligible. All told, though, these are instrumentation problems, not actual mass or weight increases. Nimur (talk) 14:04, 10 March 2009 (UTC)
- Actually, if you heat the object inside an oven and then wait for all the convection stop, the aparent weight would increase slightly because the density of the air inside the oven decreases more markedly then the density of the gold object itself. Dauto (talk) 15:42, 10 March 2009 (UTC)
- Whether we consider the relativistic increase in mass due to mass-energy equivalence of the added heat, or we consider the decrease in apparent weight due to displacement effects WRT the air the gold is in, this all belies the fact that these calculations are largely intellectual curiosities, and have little bearing on actual measurable effects. They may be calcuably real, but are realisticly imaginary. All of these effects are on the order of micrograms per ton; at those ranges, any device sufficiently resiliant enough to not be crushed by that sized lump of gold would not be sensitive enough to measure the mass or weight difference at the different temperatures. And any scale which may be sensitive enough to measure microgram amounts would be crushed by a one ton sample of gold. So yes, one can calculate a meaninglessly small number that would represent the change in mass or weight of a hot vs. cold object, but such a calculation, while rigourously true WRT the theory, would be in practice impossible to actually measure. Its an interesting thought experiment, but has no practical purpose. --Jayron32.talk.contribs 16:50, 10 March 2009 (UTC)
- Never tell a physicist than a change is 'in practice impossible to actually measure'; you'll never hear the end of it. (On the plus side, you'll get a brand-new high-precision balance out of it.) The (volume) coefficient of thermal expansion for gold is given as 42ppm/K, so about 250 degrees' (celsius or kelvin) temperature change will result in a 1% change in volume. 25 degrees will suffice for a 0.1% change.
- One thousand grams of gold will occupy a volume of about 50 cubic centimeters (milliliters, mL), 1% and 0.1% changes in volume are respectively 0.5 and 0.05 mL. The density of room-temperature air is roughly 1.2 kilograms per cubic meter, equal to 1.2 g/L or 1.2 mg/mL. Assuming constant temperature air, the buoyancy change would therefore be .6 milligrams or 0.06 milligrams — that's a bouyancy effect of between (roughly) 0.1 and 1 part per million. Is that tiny? Absolutely. But it's well within the capabilities of ordinary analytical chemistry instruments. A very quick Googling finds this balance – a steal at just under ten thousand dollars! – with a 0.1 ppm repeatability. Do some more detailed shopping and I guarantee that you'll be able to find commercially-available balances that are even more precise.
- Of course, those high-precision balances are all going to be rigorously temperature and atmosphere controlled, because changes in air temperature and humidity would otherwise have a significant effect on measurements. Both the bouyancy of the object being weighed and the components of the balance have to be carefully accounted for. As Dauto noted, it's virtually impossible to precisely weigh a sample that is at a different temperature than the surrounding air, and a warming the air reduces its density more than a similar temperature change would reduce the density of the gold. The reduced buoyancy of both the gold and the balance's weighing components will alter the apparent reading of balance. The precise effect on the balance's reading will depend on the particular weighing mechanism the balance employs, but typically the displayed measurement will be higher with increasing temperature. TenOfAllTrades(talk) 17:41, 10 March 2009 (UTC)
- Jayron, eventhough the relativistic dependence of an objects mass on its temperature is indeed very small and as far as I know has never been directly measured, it's still a real effect and there is one very important practical reason for us to be talking about it, namely it enhances the reader's understanding about modern physics. One common misconception I've seen many times before is that Einstein's mass-energy equivalence applies only for nuclear reactions. Dauto (talk) 18:04, 10 March 2009 (UTC)
If an atom or ion of gold were accelerated in vacuum in a particle accelerator to a significant fraction of the spped of light, would any increase in mass be detectable? I've been told that since early cyclotrons, relativistic mass increase of electrons had to be taken into account or the thing would not work. Granted an electron has tiny mass compared to a gold atom, but Particle accelerator seems to say that gold atoms are accelerated to several GeV per nucleon. Is a relativistic mass increase taken into account in the generation of the accelerating fields? Is the high energy gold particle "hot" or just "fast?" Or is "heat" just a property of numerous nuclei? Edison (talk) 19:29, 10 March 2009 (UTC)
- If anything is accelerated to a significant fraction of the speed of light, it's relativistic mass will change significantly. It's taken into account, although it doesn't amount for anything dramatically different than the thing accelerating more slowly. It's just 'fast', not 'hot'. Heat is a statistical thing, and as such, you need a lot more than just one particle. (Or as one professor put it: "Temperature is something you measure with a thermometer") Speaking of gold and relativity; The yellow color of gold is also an effect of special relativity. The high nuclear charge causes the innermost electrons to have high kinetic energy; so high that they acquire relativistic mass. This, in turn, leads to a change in energy. Specifically a p-band level which is in the ultraviolet in silver, is shifted down into the blue. Hence, gold absorbs blue light and appears yellow. So you could say that if Einstein was wrong, gold would be silver-colored! --Pykk (talk) 20:02, 10 March 2009 (UTC)
- Yep, the increase in relativistic mass abosolutely has to be taken into account in accelerator design. Early cyclotrons could only accelerate particles up to a few percent of the speed of light; as the particles gained mass, they fell out of sync with the alternating, accelerating radio frequency field. Later evolutions of the cyclotron led to the synchrocyclotron (which varied the RF frequency to compensate for the more massive particles) and the isochronous cyclotron, which uses a nonuniform magnetic field. Modern synchrotron technology, meanwhile, carefully tunes both the accelerating electric field and the bending magnetic field to follow the increasing mass and energy of a particle beam. TenOfAllTrades(talk) 21:31, 10 March 2009 (UTC)
All of this is all fine and wonderful - but you're doing the OP no favors at all. The first answer from Cyclonenim was 100% clear and correct - no elaboration was required. Almost all of the answers since then have SUBTRACTED clarity - SUBTRACTED truth and piled confusion onto confusion until the sum total of all of the replies is a big steaming heap of CRAP. All you've done is collectively either turned off the poster or confused the heck out of someone who needed a simple answer to a really simple question. The simple word "NO" would have been a million times better than the 20 paragraphs of irrelevent twaddle. I'm angry and disgusted. We are hear to answer peoples question - that's the objective here. This is a low point in the annals of WP:RD/S. SteveBaker (talk) 23:16, 10 March 2009 (UTC)
- Amen brother. Everything he said. X 2 from me. --Jayron32.talk.contribs 23:20, 10 March 2009 (UTC)
- You may be right but I prefer not to patronise the reader and assume they can handle complexity. Dauto (talk) 00:02, 11 March 2009 (UTC)
- It's not patronising to make an assumption as to the level they're ready for based on the question. If someone asked "I know that babies are made when the sperm and the egg meet, but how does the sperm get to the egg?" you could be pretty sure that, assuming they weren't pulling your leg, an answer involving hormones and the mechanisms of sperm motion would be unhelpful. Clearly they need to understand some more basic principle first. You might find, after answering that, that they ask for further information, in which case you can go into more detail. But not before they understand the larger point. 79.66.56.21 (talk) 08:08, 11 March 2009 (UTC)
- No but if they ask "does the egg get heavier when its hot" you don't say no if the answer is yes. —Preceding unsigned comment added by 129.67.37.225 (talk) 12:19, 11 March 2009 (UTC)
- It's not patronising to make an assumption as to the level they're ready for based on the question. If someone asked "I know that babies are made when the sperm and the egg meet, but how does the sperm get to the egg?" you could be pretty sure that, assuming they weren't pulling your leg, an answer involving hormones and the mechanisms of sperm motion would be unhelpful. Clearly they need to understand some more basic principle first. You might find, after answering that, that they ask for further information, in which case you can go into more detail. But not before they understand the larger point. 79.66.56.21 (talk) 08:08, 11 March 2009 (UTC)
- I'll bet good money that a hot egg is no heavier than a cold one. APL (talk) 15:12, 11 March 2009 (UTC)
- The proper place for a metadiscussion about how to answer questions at the Desk is on a talk page (either that of the user involved, or on the Ref Desk talk page). Can we please take the bickering elsewhere? TenOfAllTrades(talk) 13:05, 11 March 2009 (UTC)
- What's wrong with just giving the poor guy a simple answer and, if you must, adding a note that the universe is always more complex if you need it to be? Let me try :
- "The gold will stay the same weight. Assuming that it's not getting so hot that it boils away, but even then it would stay the same weight if you count the weight of the vapor. See Conservation of Mass. (By the way, I'm ignoring Einstein's E=MC2, because that effect won't even be noticeable unless you've got about a million pounds of gold.) "
- There. That was easy. APL (talk) 15:12, 11 March 2009 (UTC)
- @SteveBaker: No. (I'd explain why but I'm assuming you wouldn't understand.) – 74 18:44, 11 March 2009 (UTC)
- That's unfair. Steve's assumption is reasonable. Zain Ebrahim (talk) 08:37, 12 March 2009 (UTC)
Running dog
My dog Jerka runs after her anus, turning very fast, always counter-clockwise. I was told by a friend, a physicist, that this is due to us living in the northern emisphere. But how can it be? Should it mean that she would turn the other way around in the southern emisphere?? Thanks, it's not a veterinary request.--131.114.73.84 (talk) 12:21, 10 March 2009 (UTC)
- No - that's not the reason and if your friend is truly a physicist then (s)he is making a joke at your expense. Your friend is referring to the coriolis effect - but that only applies to very large scale things like hurricanes and ocean currents - not to small dogs! The reason your dog is going this is because she is bored or because she has infected Anal glands. If she also 'scoots' along the floor - sitting down and pulling herself along with her front feet - then it is the latter and you need to go see a Vet ASAP. If she's not scooting then it's probably just boredom - but you might want to get her checked out anyway. Dogs who engage in this 'tail chasing' behavior do get into the habit of doing it in just one direction - but sometimes you can get them to do it in the opposite direction too by gently pointing the tail down the other side of the body...but boredom isn't good. Play with your dog more - get toys - walk her more frequently, and if you can find someplace safe like a dog park where she can run with other dogs off-leash, that would be a very good thing too. SteveBaker (talk) 12:52, 10 March 2009 (UTC)
Your friend is pulling your leg. Dauto (talk) 15:48, 10 March 2009 (UTC)
- You may also want to read our article on Stereotypy, a serious psychological condition in animals, usually brought on by extreme isolation or lack of interaction. If you are concerned that your dog has this problem, please seek medical advice from a veterenarian. --Jayron32.talk.contribs 16:42, 10 March 2009 (UTC)
Sparrow behavior
This question inspired an article to be created or enhanced: |
I didn't see anything in the house sparrow article under "Behavior", but I suspect it's a more general bird behavior. Anyone? -GTBacchus(talk) 16:47, 10 March 2009 (UTC)
- I would guess that this is a way to get rid of parasites. Another possibility is that it masks their scent. StuRat (talk) 17:10, 10 March 2009 (UTC)
- http://www.stanford.edu/group/stanfordbirds/text/essays/Bathing_and_Dusting.html --Digrpat (talk) 18:03, 10 March 2009 (UTC)
- Just sounds like a dust bath, which many animals enjoy. Weirder: anting (bird activity). --Sean 19:45, 10 March 2009 (UTC)
- Very interesting. Thank you all. -GTBacchus(talk) 03:04, 11 March 2009 (UTC)
- I started a page, but s.o. has already ripped out the structure and lots of the contents. I'm throwing up my hands in despair and am waiting for the delete to hit. Anyone else willing to waste some effort is welcome to try (Lisa4edit) 76.97.245.5 (talk) 03:43, 11 March 2009 (UTC)
- It seems to be a good stub; I don't see why it would be deleted. Thanks for your work. -GTBacchus(talk) 15:10, 11 March 2009 (UTC)
- I started a page, but s.o. has already ripped out the structure and lots of the contents. I'm throwing up my hands in despair and am waiting for the delete to hit. Anyone else willing to waste some effort is welcome to try (Lisa4edit) 76.97.245.5 (talk) 03:43, 11 March 2009 (UTC)
Energy loss in Reflection (intensity loss) [formula wanted please]
Moved from Maths desk --Tango (talk) 17:01, 10 March 2009 (UTC)
I have been working on a solution to Multi-path dispersal in optical fibers But i need to know how much energy is lost every time the light hits the fiber wall. As a percentage or a decimal if that is how it works. i.e.
IntensityOut = 0.95 * IntensityIn
and also, the refractive index of optical fiber.
BenC303 Benc303 (talk) 16:57, 10 March 2009 (UTC)
- The fresnel equations will tell you how to compute the reflectability of a interface given the refractive idexes of both materials as well as the incidence angle. Dauto (talk) 19:00, 10 March 2009 (UTC)
- I don't think the Fresnel equations are going to be helpful here — optical fibers rely on total internal reflection to keep the light in the fiber core. Do we have any optical engineers in the house? TenOfAllTrades(talk) 23:21, 10 March 2009 (UTC)
- Yes, you are right, and yet the Fresnel equations are the right answer to the question. We can only assume that either Benc has a different thing in his mind than the normal use (or kind) of optical fiber or that s/he doesn't know what s/he is doing. Dauto (talk) 23:45, 10 March 2009 (UTC)
I'm an A level student, that has lots of random theories, and ive been testing this one out using interactive physics, modeling light as photons, unfortunately, my knowledge of how light acts in wave form inside an optical fiber is very limited. Even in TIR there is a very small percentage of light lost on every reflection..(well, thats what we've been taught).. and if there isn't, then it only makes my idea better. But as i say, my knowledge is limited and my ideas will most definitely need refining. is there an email i can send my work to someone who's interested? Benc303 (talk) 23:20, 11 March 2009 (UTC)
benefits of wanking
Hi wikipedia,
Something that i've always wanted to know.. I keep finding articles about the benefits of sex (like this one[32] but as someone who hasn't got laid in a really really really long time, can i get similar benefits from flying solo? Or, should i whore myself out for the benefit of my immune system/ prostate gland/self-esteem? Thanks81.140.37.58 (talk) 17:32, 10 March 2009 (UTC)
- If you want a definite answer, you'll have to ask a doctor, we can't provide medical advice. You may find Masturbation#Benefits useful, though. --Tango (talk) 18:01, 10 March 2009 (UTC)
- Here's some ideas: it increases self-knowledge of your own sexuality; it helps you sleep; relieves pain and stress; it may help prostate health in men (it has this in common with sex) and reduce menstrual pain and yeast infections in women; as well as providing hours of cheap amusement in these straitened financial times.[33][34] --Maltelauridsbrigge (talk) 16:49, 11 March 2009 (UTC)
We need to settle a debate: Athletic vs Non-Athletic People
Classmate states that the more athletic a person is, the more they will have to urinate and defecate, frequency and amounts. If a person is overweight or obese, they do not need to urinate and defecate as much (frequency). So, he's saying that fatter people hold in "poop" longer than they should, healthwise. I told him that this was bull poop and that it depends on your diet and genetics (maybe?). Is there really a difference? --Emyn ned (talk) 17:50, 10 March 2009 (UTC)
- While I can see that muscle tone will have an effect on elimination (it's often given by nurses as the reason elderly people suffer from constipation, for example), I can't see that it will have an effect on retention. Water retention will depend on the size of the bladder, the efficiency of the kidneys, the amount of salt consumed, and so on. However, fecal retention may well have something to do with size because you've got to put all that poo somewhere! There is an urban myth that John Wayne had retained half his bodyweight in poo, according to the post mortem. I would have also thought that the amount consumed will affect the amount eliminated too. --TammyMoet (talk) 19:38, 10 March 2009 (UTC)
- There's a scam out there that says something along the lines of "people retain too much fecal matter, and this causes toxins to enter the body, and you can stop all this and improve your health by giving us money for X cure". Except for cases of constipation, where laxatives might be warranted, this is pretty much all a scam. As for the quantity of feces, that's determined by the quantity of food eaten. Athletes and the obese both tend to eat more food, so I'd say a thin, but sedentary, person would likely produce less. However, this is no indication of general health. Indeed, the fewest feces might well be produced by an alcoholic who gets 100% of his calories from booze and never eats anything solid. Also note that healthy foods tend to be low on calories and high on nutrients. The "low on calories" part requires that more food be eaten to get enough calories, and hence more feces will be produced. The quantity of urine produced isn't so closely linked to the quantity of water consumed, because water is also lost in sweat, respirations, etc. StuRat (talk) 20:24, 10 March 2009 (UTC)
Does that mean I win? --Emyn ned (talk) 17:47, 11 March 2009 (UTC)
- Yes, it does. StuRat (talk) 01:17, 12 March 2009 (UTC)
Looking for a biochem comic
Hi, I wonder if anyone can find this:
It's a short comic about biochemistry and genetic manipulation in particular, but in an educational way. There's a kid and a teacher, or something, and the teacher is explaining what is and isn't possible with genetic manipulation. Eventually, they make a microbe that generates a filmy layer and also free hydrogen, which it gathers up to make a balloon that rises into the air.
I think it was a few years back, and it was online. Possibly it used flash or something, and might be associated with a scientific thing?--163.1.210.162 (talk) 20:33, 10 March 2009 (UTC)
- Just so you don't think we're ignoring you - I had a good dig around - but didn't turn up anything. If there are ANY more things you can remember about it - it would help. SteveBaker (talk) 01:55, 11 March 2009 (UTC)
Loop-the-loop on a skateboard
I saw one of those video clip shows featuring various nasty accidents. One clip showed a skateboarder attempting a loop-the-loop, failing, and landing on his head. Luckily he survived with a light concussion. The reason for his fall was presumably insufficient centrifugal force to hold the rider to the roof of the full pipe he was in. I feel that if he had been travelling faster, he might well have completed the loop successfully. I was thinking though, was there anything else he could have tried to improve his chances of success (eg. crouching down on his board at the start of the loop)? Astronaut (talk) 22:29, 10 March 2009 (UTC)
- Crouching would have made things worse by reducing his speed at the top of the loop and increasing the effective radius of his trajectory. Dauto (talk) 23:27, 10 March 2009 (UTC)
- But...if you go around standing up - your moment of inertia is higher than if you were crouched - so that suggests that more energy goes into producing that rotation. Since the only source of energy here is your initial kinetic energy, it follows that you'll have less speed at the top of the loop if you're standing up. It's not entirely clear to me which is best...but my 'gut feel' says that crouching is better. SteveBaker (talk) 00:33, 11 March 2009 (UTC)
- Not quite, in this case. Your moment of inertia is smaller in a crouch if you're rotating about your center of mass — but that's not happening here. The skateboarder's rotation will be about the center of the loop, and moving mass closer to the center of the loop reduces the moment.
- Alternatively, you can convince yourself using a conservation of energy argument. The kinetic energy of the moving skater entering the bottom of the loop will be converted to (gravitational) potential energy as the skater comes through the top of the loop. If the skater is in a crouch, his center of mass ends up higher at the top of the loop (closer to the track) than if the skater is standing erect; the crouching skater has to give up more of his kinetic energy. TenOfAllTrades(talk) 02:06, 11 March 2009 (UTC)
- This is the easiest explanation to understand that I've seen posted so far. You can play with rotating frames of reference and moments of inertia all you like, but Conservation of Energy will not be violated. Being crouched while at the top of the loop will require more gravitational potential energy, so the skater will be moving slower. At some critical minimum speed (), the skater will fall out of the loop. Interestingly, one can also calculate the speed at the top from conservation of energy, since . This will fully constrain the minimum initial velocity for a given loop radius if the skater does not want to fall out of the loop. Equivalent to a stable circular orbit, half the energy should be kinetic and half should be potential (at the point of zero contact-force against the loop - e.g., instantaneous separation from the "floor"/"ceiling"); this is the stability boundary. Nimur (talk) 02:19, 11 March 2009 (UTC)
- But...if you go around standing up - your moment of inertia is higher than if you were crouched - so that suggests that more energy goes into producing that rotation. Since the only source of energy here is your initial kinetic energy, it follows that you'll have less speed at the top of the loop if you're standing up. It's not entirely clear to me which is best...but my 'gut feel' says that crouching is better. SteveBaker (talk) 00:33, 11 March 2009 (UTC)
- Two points. First: energy is conserved only when there is no external work and the contact force with the ground can do work here when you crouch or stand. Second: What was that babbling about equal amounts of kinetic and potential energy? Dauto (talk) 02:52, 11 March 2009 (UTC)
- Circular motion is stable if the potential energy equals the kinetic energy. At the apex of the circle, the instantaneous representation of the kinetics are identical to that of an orbit (the force is applied towards the center of the motion, and the orbit is only circular if the kinetic energy equals the potential energy. After this instant, the analogy breaks down, because gravity acts downwards, which is not pointing towards the center of the loop, at all other points. Nimur (talk) 03:07, 11 March 2009 (UTC)
- Nimur, you are seriously confused. That principle of equal kinetic and potential energy for circular orbits that you are using simply doesn't exist. For instance, a planet in a circular orbit has negative potential energy and positive kinetic energy and the sum of the two is negative. Dauto (talk) 03:19, 11 March 2009 (UTC)
- Potential energy is only defined up to an additive constant (you can choose the 0 point arbitrarily), so it only makes sense to talk about changes in potential energy. The change is potential energy will be equal to the change in kinetic energy (with the opposite sign), but that's true regardless of the path of motion. So I have no idea what Nimur was thinking of. --Tango (talk) 12:46, 11 March 2009 (UTC)
- It's a bad analogy. And you are right, it is only valid up to an additive constant; but, if you accept that the initial height is "zero" and solve the conservation of energy equation I posted above, you will see that half of the initial kinetic energy is transferred to potential energy when the skater reaches the top. Of course, the change in potential is always equal the the change in kinetic energy; but I'm talking about the ratio of . If any more kinetic energy is lost, then the loop is too high for the initial speed, and the skater falls down. This is useful if you want to solve for the minimum initial speed to make a full loop; you can write the equations however else you find convenient. As for the planetary orbits, again, this is valid only to an additive constant; it's a functional analogy only for a particular reference potential. I'll see if I can dig up this in my mechanics book which thoroughly works out the orbital equation (I believe it's in Chapter 7 or 8). My description of my application of this technique was sloppy, sorry if it confused anyone. To summarize, it is just a special-case solution of the conservation of energy for a zero-contact-force at the top of the loop. Nimur (talk) 14:29, 11 March 2009 (UTC)
- Nimur, you are seriously confused. That principle of equal kinetic and potential energy for circular orbits that you are using simply doesn't exist. For instance, a planet in a circular orbit has negative potential energy and positive kinetic energy and the sum of the two is negative. Dauto (talk) 03:19, 11 March 2009 (UTC)
- I'm gettig . I think you should read that chapter again. Dauto (talk) 15:41, 11 March 2009 (UTC)
- Well, I get 1/3. (Assuming by "final" and "initial" you mean "top" and "bottom" - the final will be equal to the initial if you do the full loop). so . The change in potential energy between the top and bottom is , so the kinetic energy at the bottom needs to be so . Is there is mistake in there somewhere? --Tango (talk) 16:47, 11 March 2009 (UTC)
- Yes, there's a mistake in there somewhere! The height is twice the radius, so , so , so . Dauto is correct. --Tango (talk) 16:50, 11 March 2009 (UTC)
- Well, I get 1/3. (Assuming by "final" and "initial" you mean "top" and "bottom" - the final will be equal to the initial if you do the full loop). so . The change in potential energy between the top and bottom is , so the kinetic energy at the bottom needs to be so . Is there is mistake in there somewhere? --Tango (talk) 16:47, 11 March 2009 (UTC)
- I'm gettig . I think you should read that chapter again. Dauto (talk) 15:41, 11 March 2009 (UTC)
- Woops. I guess I was mistaken; I should have done the equations out on paper. The important thing is that there is an analytic solution to the problem. Nimur (talk) 19:40, 11 March 2009 (UTC)
- Just from experience with this sort of thing, it makes a big difference if you start crouching and stand up or "push" when entering the transition. Since a full loop is a continuous transition, I would put my money on the skater starting crouched and continuously transitioning to a standing position at the top of the loop for best results. You can actually see most people do this when they do make the loop, and then bend their legs again to absorb the impact of the exit transition. —Preceding unsigned comment added by 99.255.228.5 (talk) 00:47, 11 March 2009 (UTC)
- As a matter of fact, your moment of inertia with respect to rotations around the center of the trajectory will be smaller if you are standing. Gut feel is a terrible way to do science. Dauto (talk) 00:49, 11 March 2009 (UTC)
- Quite. The one key advantage to remaining in a crouched position is it is easier to maintain your balance. (The contact point of skateboard with track will be closer to your center of mass when you're crouched than if you're standing erect.) TenOfAllTrades(talk) 01:46, 12 March 2009 (UTC)
- As a matter of fact, your moment of inertia with respect to rotations around the center of the trajectory will be smaller if you are standing. Gut feel is a terrible way to do science. Dauto (talk) 00:49, 11 March 2009 (UTC)
- Conservation of angular momentum suggests that if you go into the loop while crouching, then straighten up while already beginning to loop, you should pick up speed by straightening (the extra kinetic energy comes from your having to exert force using your muscles to straighten up). Ballet dancers use this effect when they begin a pirouette with their arms outstretched, then pull their arms inward as they spin. 207.241.239.70 (talk) 01:06, 11 March 2009 (UTC)
- Yes, crouching and standing again will help. The sooner you stand back up the better (as long as you are already in the loop). The worst thing you could do would be to crouch and forget stand up again. Dauto (talk) 02:04, 11 March 2009 (UTC)
March 11
Tongs Cause Illness!
Tongs must cause illnesses to be spread. Think about it: if I reach my hand into a bucket of rolls, I may contaminate 2-5 rolls, i.e. the ones that my hand comes directly in contact with. However, if I use a tong, I am touching the same surface that dozens of others have touched, giving me their germs, and spreading my own to all future users of the tongs. The same goes for any food I can think of, given that eventually one's hands will reach the mouth. Why do people insist on using tongs when five seconds of thought reveals they are a BAD thing? 169.229.75.128 (talk) 00:25, 11 March 2009 (UTC)
- NOoooo! The tongs have two ends - the end you touch and the end that touches the bread. The bread touches the parts of the tongs that (in theory) no human hand has gone - so it stays clean. Sure, your hand gets fractionally dirtier - and if you use the same hand to pick up your bread - then it gets a fraction-of-a-fraction dirtier. However, at least it's all under your control - you can go wash your hands - or pick the bread up with a napkin - or cut and eat with knife and fork - it's all your choice. If the bread is already covered with who-knows-what when you get it, there is nothing you can do. SteveBaker (talk) 00:41, 11 March 2009 (UTC)
- Also to consider... How long does some bacteria/virus that you have on your fingers last on the tongs as compared to the food - especially when the food is on a warmer. Personally, I do not eat at buffets because I find it overpriced and disgusting - no different than eating from a trough. If I did, I would prefer the people touched the tongs and not my food. I can wash my hands, but I can't wash all the food. -- kainaw™ 01:10, 11 March 2009 (UTC)
- No, you're both missing the point. To Steve: you touch the tongs with the germs, then you eat your food. It doesn't matter if there are two ends! No one I see at the buffet actually washes their hands IN BETWEEN getting their food and eating, they might wash before the whole process but not after getting the food. It's not "fractional", germs are germs are germs are germs. And to Kainaw: you ask about time? When 100's of people are touching the tongs each hour, how long does it matter? 169.229.75.140 (talk) 01:27, 11 March 2009 (UTC)
- I won't argue your point regarding rolls (I'm not sure you're right, but I can't conclusively say why.) However, let's look down the buffet table a bit past the bread and see what else we have... Any ideas on how to serve spaghetti without tongs? - EronTalk 01:49, 11 March 2009 (UTC)
- Since this is the Science reference desk and not the Wild Speculation Reference Desk, take a look at Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods, from the International Journal of Food Microbiology (2003) [35]; and, The survival and transfer of microbial contamination via cloths, hands and utensils, in the Journal of Applied Bacteriology (1990) [36]. "Gram-negative species survived for up to 4 h, and in some cases up to 24 h. Where contaminated surfaces or cloths came into contact with the fingers, a stainless steel bowl, or a clean laminate surface, organisms were transferred in sufficient numbers to represent a potential hazard if in contact with food." Evidently, utensils can and do spread bacteria. Of course, a more relevant question is: do tongs decrease the risk of bacteria propagation compared to handling food without them? Nimur (talk) 01:58, 11 March 2009 (UTC)
- The spaghetti issue is ONLY a messiness/convenience issue. My original point is about cleanliness and germs. I was scolded by a buffet manager for not using the tongs for the rolls, that's what started this thread.169.229.75.140 (talk) 02:12, 11 March 2009 (UTC)
- See also Five-second rule. -- Wavelength (talk) 03:32, 11 March 2009 (UTC)
- You're mistaken about the fractional thing. The number of pathogens you come in to contact with makes a big difference in how likely you are to be infected. If you still don't get it, to use a simple example, there's a big difference between frenching someone who has a cold and the same person coughing onto their hand which they then use to open a door and the door is then later opened by person B and then person B later shakes hands with person C who then opens another door which you person D opens. And the reason why restaurants insist on tongs is because they don't want you contaminating their food (indeed it may be a legal requirement). Person you're not aware of this but your exposted to 'germs' probably every minute of every day unless you live or work in some sort of ultra clean room. Contaminating their utesils is a different matter and realisticly is to be expected. Do you object when the waiter doles out utesils with their hand? What about when the waiter doles out food with their hand? The key point as SB mentions and we discussed later, you can choose not to eat with your hands (or wash/sterilise them after they've been contaminated). But once the food has been you have to either throw it out or cook it again. Nil Einne (talk) 06:25, 11 March 2009 (UTC)
- Another point... Assume some heavily diseased imbecile is trying to infect everyone at a buffet. In scenario 1, he uses tongs. I touch the tongs and my hands have some bacteria on them. Most bacteria will not absorb into your skin easily. They must get into your body (usually through ingestion). But, it is on my hands and I use a fork, spoon, and knife while I eat. So, I'm not infected. In scenario 2, he shoves his hands into all the food. Everything he touches gets infected. As others shuffle the food around, the infection spreads. The food is infected so, regardless of if I use utensils or not, I will get infected. Which scenario is more sanitary? -- kainaw™ 03:43, 11 March 2009 (UTC)
- If plasitc surfaces worked just as well for breeding bacteria as food, why then don't we use empty petri dishes instead of Agar plates to grow cultures? Since we do the latter, one assumes pathogens grow better when they have lots of stuff they can eat.76.97.245.5 (talk) 03:57, 11 March 2009 (UTC)
- As a final point to Kainaw's scenario, the same diseased person opened the door to the restaurant that you also opened. If you touched the door, you got the same germs as you would have from the utensils... The whole thing is that this is more about ritual uncleanliness with regards to the psychology of eating more than any real risk of increased disease. Disease spread by contact with tongs would just as likely spread through any of a thousand other mechanisms throughout the course of your day. If you want to avoid infection at that level, your probably better off not leaving your clean-room of a house... --Jayron32.talk.contribs 05:57, 11 March 2009 (UTC)
- If plasitc surfaces worked just as well for breeding bacteria as food, why then don't we use empty petri dishes instead of Agar plates to grow cultures? Since we do the latter, one assumes pathogens grow better when they have lots of stuff they can eat.76.97.245.5 (talk) 03:57, 11 March 2009 (UTC)
- I think Kainaw has an excellent point. Just use utesils to eat the food (yes you can use a fork to eat a roll) and don't touch your mouth or nose (which is something you shouldn't be doing anyway). Unless you wear rubber gloves everywhere you go, you pick up way more germs in regular contact with the environment anyway so it's pointless worrying about the germs that do get on your hand, just avoid consuming them. Nil Einne (talk) 06:17, 11 March 2009 (UTC)
- Two other related points, the vast majority of bacteria are harmless. If you do not get exposed to infectious organisms you will never build up a useful immunity. Richard Avery (talk) 07:25, 11 March 2009 (UTC)
The point everyone seems to be making is basically this: who cares because you will get the germs anyway. In that case, AGAIN I ask why have tongs if you're gonna get the illness anyways. And to respond to legal questions, that's my point! Why are tongs required by law? And finally, NO ONE doesn't touch their mouth at some point. Somehow, someway, your hand (or something you touch) will make it to your mouth. I do not object to waiters because I have some trust that they wash their hands because their job depends on it. Regular buffet-goers, I am almost sure, do NOT wash their hands. I would rather they just grab the food, infect one or two or three rolls than touch the tongs and infect everyone who touches it in the future.128.32.78.189 (talk) 17:12, 11 March 2009 (UTC)
- I think the distinction is between what is possible and what is likely. It is possible that people will get sick if everyone uses tongs. It is likely that people will get sick if everyone uses their hands. SDY (talk) 17:21, 11 March 2009 (UTC)
- I still can't see how that's true. If dozens of people touch the tongs, while only a handful of rolls (or whatever) are contaminated if there are no tongs, then even if the odds of contamination are a dozen times more likely for the no-tongs, the number of infections will still be EQUAL either way (at most).128.32.78.176 (talk) 17:37, 11 March 2009 (UTC)
- You are not considering the fact that just as everyone uses the tongs to select bread, without tongs everyone would use their hands. So multiply that 2 to 5 rolls you suggest might be contaminated by hand contact by every person who takes a piece of bread. You reach in and touch four rolls. I reach in and touch three different ones. The next guy reaches in and touches five different ones. Pretty soon the whole bin would be contaminated, wouldn't it? Given the choice between surface contamination of a utensil, which might be transferred to my hand, and surface contamination of food, which will be transferred to my mouth, I'll take my chances with the tongs. (If you are really worried about this, may I suggest using a napkin to hold the tongs?) - EronTalk 17:44, 11 March 2009 (UTC)
- You won't object if a waiter hands out food with his/her hands? Really? Also it's easily possible to minimise contact with your mouth and nose (no one said never touch). Personally I don't actually bother but I don't get sick much so I guess it doesn't matter. But since you are so worried about getting sick from touching tongs, you really need to change your practices rather then getting worked up over nothing. I do hope you already wear a face mask whereever you go. P.S. As has already been stated, touching tongs which have been contaminated is unlikely to be sufficient to infect you. If you get 'infected' then it's really your own fault due to poor practice in handling food. On the other hand there's little you can do once some jerk has contamianted your food other then not eat it. Nil Einne (talk) 19:45, 11 March 2009 (UTC)
- What about things besides bacteria? I can think of any number of substances (bodily fluids, engine grease, mud...) that might be on someone's hands that I would much rather get on my hands than in my food.-- Mad031683 (talk) 20:25, 11 March 2009 (UTC)
- If you are careful, I would think you could reach in and only touch the roll you were taking. 65.167.146.130 (talk) 20:46, 11 March 2009 (UTC)
- Of course you could, and I made that point to the buffet manager too, he thought I was insane I think. And I'm not doing this because I personally get sick a lot, I don't, I'm asking this because I'm curious about common practices and the reasoning behind them.169.229.75.140 (talk) 03:55, 12 March 2009 (UTC)
- The questioner has made it very clear that he will not accept any statements that may imply that a person can get his or her hands contaminated and, from that point on, avoid spreading the contamination to his or her mouth. Apparently, the questioner spends all his time with his hands in his mouth and has never heard of things like forks and spoons. With that lifestyle and limited knowledge, no amount of explanation will allow this argument to progress. -- kainaw™ 03:59, 12 March 2009 (UTC)
Disinfecting a Chicken Wing
So I have a lab where I have to 'remove all surface bacteria from a chicken wing'. I've thought about it, and my best ideas are:
1) Microwave it for a few minutes (but that would make the room smell bad..) 2) Boil it 3) Soak it in Listerine for 5 minutes (which has the added bonus of making it minty fresh)
I'm looking for something easy, but effective, so my lab report can have both a short procedure section and a minuscule errors section. Any materials I can get my hand on are fair game. In fact, there's not many restrictions at all, except that I have to be able to explain it. Any ideas? -Pete5x5 05:46, 11 March 2009 (UTC) —Preceding unsigned comment added by Pete5x5 (talk • contribs)
- And there is no requirement for being able to eat the chicken wing after this cleaning? Dismas|(talk) 05:48, 11 March 2009 (UTC)
- I wouldn't recommend microwaving or boiling as those would effectively cook the chicken wing, which from a lab perspective would make it less useful for future experiments. You might get some ideas at Sterilization (microbiology). - EronTalk 05:51, 11 March 2009 (UTC)
- Does the chicken wing have to be recognizable as a chicken wing even? You could simply incinerate it, and then test the ashes for bacteria. If not, then what is wrong with simply frying the wing in hot oil for 5 minutes or so? Then you can coat it in hot sauce, dip it in blue-cheese dressing, and enjoy. If the wing must remain raw after disinfection, then a sufficiently concentrated salt solution or brine should do the trick, or a hefty spray with Lysol or another surface disinfectant may work as well. --Jayron32.talk.contribs 05:54, 11 March 2009 (UTC)
- I wouldn't recommend microwaving or boiling as those would effectively cook the chicken wing, which from a lab perspective would make it less useful for future experiments. You might get some ideas at Sterilization (microbiology). - EronTalk 05:51, 11 March 2009 (UTC)
- This is probably a useless answer. Using food irradiation is an effective method of killing pathogens present on food without significantly affecting the taste, composition or appearance of food. However it's unlikely you have access to an irradiation chamber and I'm pretty sure you need to be well qualified and trained to use such things Nil Einne (talk) 06:11, 11 March 2009 (UTC)
- Take off the skin? DMacks (talk) 06:11, 11 March 2009 (UTC)
- Incidentally I would take care with microwaving it too long. Things can catch fire in a microwave Nil Einne (talk) 06:19, 11 March 2009 (UTC)
- Just catch fire if you're lucky! DMacks (talk) 06:25, 11 March 2009 (UTC)
- Going with more impractical ideas very high pressure would work. It would also reduce much of your chicken wing to pulp. "All" bacteria is quite a tall order because there are some rather hardy bugs out there. Plus any chicken wing you'll encounter in a lab will already have encountered a lot of processing {http://attra.ncat.org/attra-pub/poultryprocess.html#washing]. It may even have been frozen and thawed. What is on the outside of your wing comes from 4 sources: seeping out or migrating from the inside, introduced through the air, introduced through surface contact and those that survived previous processing. The latter are the most difficult to get rid of. Since some bacteria can form endospores any of those might survive most of the methods suggested above. Our article suggests Ethylene oxide. Nasty stuff, and not for your average lab assignment. To get rid of "most if not all" surface bacteria you could go with a multiple step process. I'd try in no particular order: washing in an acid, rinsing in a base, dipping in alcohol, dumping it in in boiling distilled water, shock frosting, trying to avoid exposing the surface to contact with air as much as possible. Putting it in a bag you pump full of pure oxygen should get rid of a couple of the surviving bugs. If your following assessment doesn't include doing anything with the bacteria not on the outside of the wing, you could try breeding some "easy to kill" variety in large quantity and use them to crowd out other bugs. That method is not foolproof either, because bacteria swap genetic material. Good luck. 76.97.245.5 (talk) 10:02, 11 March 2009 (UTC)
- Certainly there are a lot of ways of doing this - but which you choose has to depend dramatically on what you intend to use the chicken for afterwards. If you are going to examine the structure of the wing by dissection - then the answer has to not physically disrupt the shapes and textures. But if you are going to feed it to lab animals - then that doesn't matter at all and instead you have to be sure you're not introducing other substances into the food. So the answer is "it depends". SteveBaker (talk) 11:16, 11 March 2009 (UTC)
- All excellent ideas. We definitely don't have to eat the chicken wing after, seeing as they intentionally infect it with bacteria beforehand so that might be a little dangerous. And I would imagine it would have to still be recognizable at the end because we're supposed to let it sit for a day once we're done then come back and see how 'clean' it is (hopefully somewhere relatively sterile, or all that work will be for nothing). My favourite idea is to incinerate it and test the ashes, but not only would it be difficult for me to find a way to incinerate it (I pretty much only have access to a Bunsen burner or a microwave, unless I'm going to bring something else in) but it would be very hard to swab afterward. The strong acid/base thing is probably also unacheiveable, as I think we're only provided with stuff normally found in our particular lab room, which in this case is disinfectants. Other than that, I'd have to bring it in. -Pete5x5 11:32, 11 March 2009 (UTC) —Preceding unsigned comment added by Pete5x5 (talk • contribs)
- For surface treatment, look into using iodine compounds such as Povidone-iodine which is commonly used in medical purposes. It's the brown liquid that surgeons swab people with before making their incision. That would probably do the trick nicely and avoid harming the rest of your chicken. Failing that, I'd go with a simple 70% ethanol solution which is typically what is used in a lab for disinfecting things. --- Medical geneticist (talk) 13:48, 11 March 2009 (UTC)
- Soak it in alcohol for a few seconds, put it in a (fire proof) container, set it on fire, let it burn for a while, close the container to extinguish the fire. Dauto (talk) 14:49, 11 March 2009 (UTC)
- There are commercial anti-bacterial washes for fruit and vegetables[37]. I don't know how well they would work on chicken (does chicken have more germs?) Alcohol and vinegar as already mentioned would have a similar effect. --Maltelauridsbrigge (talk) 16:54, 11 March 2009 (UTC)
Chicken in general does have more germs. They don't test chicken for C. jejuni, they just assume it's there. No one in the real world expects that it is possible to get "all" bacteria off of a piece of food. The standard used for things such as pasteurization is generally a 5D reduction (5 logs or 99.999%) because of the concept of an infectious dose-one bacterium is rarely enough to cause an actual infection, though for things like Salmonella it may be a very low order (ten is the number I hear, but ten in one bite, one 8 oz serving, one day, it's not so clear so the number isn't helpful). SDY (talk) 17:31, 11 March 2009 (UTC)
- A brief complete submersion in 95% ethanol, plus 2 minutes of constant agitation in 10% bleach solution and then 70% ethanol solution sterilizes with practically 100% efficiency all surface bacteria and fungal spores from sections of leaf while leaving interior fungi and bacteria intact. For a chicken wing, you may need to lengthen the agitation step if there are feathers or other air-trapping surfaces on the skin. 152.16.144.213 (talk) 21:52, 11 March 2009 (UTC)
How does cancer kill people?
Just what the subject says. Is it something to do with the body's available resources diverted to feed all these cells? Or does the cancer release toxins? Please note this is not a request for medical advice, it's just that having been with someone who died of cancer, I'm curious to find out what happened at the end. --TammyMoet (talk) 10:14, 11 March 2009 (UTC)
- See this archive entry of the Science Reference Desk. —Preceding unsigned comment added by 173.49.15.165 (talk) 12:28, 11 March 2009 (UTC)
- Thanks for that reference - I'd searched the archives myself but failed to find it! I'm still not clear, though. Is it that there are more cancer cells than normal cells, and once the tipping point is reached, the cancer is incurable, you've just got to wait until you've been taken over completely?
--TammyMoet (talk) 18:49, 11 March 2009 (UTC)
- I should note that I'm not particularly well educated in this area, it's just speculation on how I think this would work. Unfortunately it's a very, very broad question because different cancers damage different organs. Most simply, it's that eventually the number of cancer cells makes it too hard for an organ to work efficiently, or even at all, and this is what would kill you. For example, cancer of the pancreas eventually stops sufficient enzyme secretion (as cancerous cells in this case cannot synthesize enzymes, at least I think) and this prevents digestion of certain foods, especially proteins and lipids. But of course, cancer can then metastatize (a.k.a. spread to other areas) and then you start getting multiple issues with multiple organs. Cancer essentially overwhelms the body, but you'd get a better explanation from a textbook. —Cyclonenim (talk · contribs · email) 20:20, 11 March 2009 (UTC)
- The problem with pancreatic cancer is that its symptoms are often vague until the disease has metastasized, and/or has invaded into adjacent tissues. The pancreas itself is not necessary for survival if the patient is given insulin and digestive enzymes. Otherwise, Cyclonenim is correct in that the mechanism of death may be dependent on local conditions. A brain metastasis may lead to increased intracranial pressure, which may result in fatal brain herniation. A cancer may invade into large blood vessels, which then may rupture and result in fatal massive hemorrhage. Often, metastatic cancer leads to a condition called cachexia (loss of appetite, loss of weight and muscle tissue, fatigue, weakness). The patient then becomes susceptible to infections, which often are the direct cause of death. --NorwegianBlue talk 22:50, 11 March 2009 (UTC)
- I should note that I'm not particularly well educated in this area, it's just speculation on how I think this would work. Unfortunately it's a very, very broad question because different cancers damage different organs. Most simply, it's that eventually the number of cancer cells makes it too hard for an organ to work efficiently, or even at all, and this is what would kill you. For example, cancer of the pancreas eventually stops sufficient enzyme secretion (as cancerous cells in this case cannot synthesize enzymes, at least I think) and this prevents digestion of certain foods, especially proteins and lipids. But of course, cancer can then metastatize (a.k.a. spread to other areas) and then you start getting multiple issues with multiple organs. Cancer essentially overwhelms the body, but you'd get a better explanation from a textbook. —Cyclonenim (talk · contribs · email) 20:20, 11 March 2009 (UTC)
Hygiene without soap
Is it possible to clean the skin without soap? I was thinking that perhaps using something like a salt or seawater could replace soap.--Mr.K. (talk) 13:15, 11 March 2009 (UTC)
- Alcohol rub perhaps? It would depend on why you wanted to avoid using soap. Fribbler (talk) 13:23, 11 March 2009 (UTC)
- Aqueous cream? I believe that is used by people allergic to soap. --Tango (talk) 13:34, 11 March 2009 (UTC)
- Soap is used because it easily carries away oils and residues which harbor bacteria. This is because soap is chemically soluble in both water and oil (polar solvents and nonpolar solvents). If you want to remove the same quantity of oil and residue, you will need to use a chemical which can dissolve them, or mechanical scrubbing to remove them by brute-force. It's not necessary to remove all the oils from the skin to be "clean" (in fact, this may agitate some people's sensitive skin). Ideally you just want to eliminate harmful bacteria; sometimes effective washing with plain water is sufficient. Nimur (talk) 14:40, 11 March 2009 (UTC)
- In some cultures, they use urine to clean skin, since it's mildly antiseptic. StuRat (talk) 15:25, 11 March 2009 (UTC)
- The Romans were well known for bathing every day, and are not known for using soap. They used a scraper to remove sweat and dirt and oil from the skin. Edison (talk) 15:30, 11 March 2009 (UTC)
- I see that there are alternatives. But what about what I suggested above? Would seawater do the trick? I feel that my skin is clean after I bath at sea.--Mr.K. (talk) 16:09, 11 March 2009 (UTC)
- Shower gel is not soap, as it has not been saponified. --Sean 16:18, 11 March 2009 (UTC)
- When I bathe in seawater, I come out covered in salt crystals, which does not leave me feeling clean at all. // BL \\ (talk) 22:56, 11 March 2009 (UTC)
Is my head younger than my feet?
We all know that if you take two ridiculously sensitive clocks, perfectly calibrated to one aonther, leave one on earth and take another up in an airplane, time will be shown to have passed slightly slower for the 'airplane clock'--less gravity. So, taking the premise that I do not spend an equal amount of time standing on my head as a I do upright, does this mean (on a ridiculously tiny scale) that since my head is farther from the earth's gravitational force than my feet, my head is slightly younger?—70.19.64.161 (talk) 13:20, 11 March 2009 (UTC)
- Any such effect would be utterly negligable compared to the fact that (if I'm reading Prenatal development correctly) your head developed at least two weeks before your feet. Algebraist 13:27, 11 March 2009 (UTC)
- Your head probably moves around more, too (think about sitting down in a chair - your feet basically don't move while your head moves quite a lot), so there is a contribution from that too. So, yes, I think your head probably is younger than your feet (assuming you start timing both at the same time), but by an immeasurably short amount of time. (I'm taking something of a leap of faith saying it's immeasurable, but considering it takes one of our best atomic clocks to measure the difference from a plane ride [incidentally, I think it's the motion rather than the gravity which causes most of that difference], I think it would take something even more precise to measure the difference between your head and your feet, even over your entire life.) --Tango (talk) 13:32, 11 March 2009 (UTC)
- If your head is moving about a lot relative to your feet, then your feet are also moving about a lot relative to your head, so that effect would tend to make both your head and your feet younger than the other. I have no idea how significant these effects would be compared to the gravitational effects (of course, in absolute terms, all these effects are tiny). Algebraist 13:36, 11 March 2009 (UTC)
- Have you read Twin paradox? It explains that problem - the short answer is that the one accelerating is the one that ends up younger. --Tango (talk) 14:33, 11 March 2009 (UTC)
- Isn't that something to do with the fact the accelerating one changes inertial frame of reference? —Cyclonenim (talk · contribs · email) 14:44, 11 March 2009 (UTC)
- Sort of - accelerating means you don't have an inertial reference frame (inertial basically means "non-accelerating"). Special relativity says that all inertia reference frames are on an equal footing, it doesn't say anything about non-inertial frames (you need general relativity for that, but that doesn't affect the Twins paradox). --Tango (talk) 17:21, 11 March 2009 (UTC)
- Er, I used to know all that stuff, but apparently no longer. I'm not at all sure my head does more accelerating than my feet, though, what with walking and so on. Algebraist 18:50, 11 March 2009 (UTC)
- Sort of - accelerating means you don't have an inertial reference frame (inertial basically means "non-accelerating"). Special relativity says that all inertia reference frames are on an equal footing, it doesn't say anything about non-inertial frames (you need general relativity for that, but that doesn't affect the Twins paradox). --Tango (talk) 17:21, 11 March 2009 (UTC)
- Gravitational redshift would make your had a tiny bit older (not younger). Dauto (talk) 15:14, 11 March 2009 (UTC)
- You don't mean redshift, you mean time dilation, but you're right. Time goes slower nearer a massive object, not further away. --Tango (talk) 16:29, 11 March 2009 (UTC)
- Isn't that something to do with the fact the accelerating one changes inertial frame of reference? —Cyclonenim (talk · contribs · email) 14:44, 11 March 2009 (UTC)
- Have you read Twin paradox? It explains that problem - the short answer is that the one accelerating is the one that ends up younger. --Tango (talk) 14:33, 11 March 2009 (UTC)
- If your head is moving about a lot relative to your feet, then your feet are also moving about a lot relative to your head, so that effect would tend to make both your head and your feet younger than the other. I have no idea how significant these effects would be compared to the gravitational effects (of course, in absolute terms, all these effects are tiny). Algebraist 13:36, 11 March 2009 (UTC)
- No, I mean redshift because that's what it is usually called. Time dilation is fine as well. Dauto (talk) 17:07, 11 March 2009 (UTC)
- No, gravitational redshift is where light it shifted towards the red end of the spectrum by gravity. That can be viewed as being caused by time dilation. The slowing of time is called "time dilation". --Tango (talk) 17:18, 11 March 2009 (UTC)
- No, I mean redshift because that's what it is usually called. Time dilation is fine as well. Dauto (talk) 17:07, 11 March 2009 (UTC)
- Gravitational time dilation is often called gravitational redshift wheather you like it or not. Dauto (talk) 18:47, 11 March 2009 (UTC)
- Can't we all just get along? - EronTalk 18:57, 11 March 2009 (UTC)
- Thanks for the link. It explains better than I could why reshift is indeed the correct term. Dauto (talk) 19:06, 11 March 2009 (UTC)
- Can't we all just get along? - EronTalk 18:57, 11 March 2009 (UTC)
- Kind of related comment/question: what's the theory/law that states that the faster something moves, the less it is affected by time? And doesn't that mean that if you could somehow move at the speed of light time wouldn't affect you at all? -Pete5x5 (talk) 16:39, 11 March 2009 (UTC)
- That's time dilation, referenced above. It doesn't mean that time doesn't affect you; it means that to an observer who isn't moving as fast, time doesn't appear to be affecting you. (More correctly, time is affecting you more slowly.) Within your own personal frame of reference you would still experience the passage of time. - EronTalk 16:57, 11 March 2009 (UTC)
- Kind of related comment/question: what's the theory/law that states that the faster something moves, the less it is affected by time? And doesn't that mean that if you could somehow move at the speed of light time wouldn't affect you at all? -Pete5x5 (talk) 16:39, 11 March 2009 (UTC)
- Special relativity#Time dilation and length contraction also has relevant info about your question. Dauto (talk) 17:07, 11 March 2009 (UTC)
Finger and toenails
This didn't happen to me and is a subject of mere curiosity, so I hope it won't be construed as seeking medical advice; however: can a fingernail or toenail, entirely removed (at the root) ever grow back? And if so, will it be deformed? 99.245.92.47 (talk) 13:28, 11 March 2009 (UTC)
- It's unusual, but possible. See "Ingrown nail#Nail avulsion". The new nail usually has some deformity. Axl ¤ [Talk] 15:28, 11 March 2009 (UTC)
- Oh, ugh! I wish you would have put a disturbing picture warning on that. When you say "unusual", does that mean it's unusual for the nail to return? 99.245.92.47 (talk) 15:35, 11 March 2009 (UTC)
- I thought it was dependent upon whether you take the nail plate out or not. If you do, it can't regrow. —Cyclonenim (talk · contribs · email) 16:14, 11 March 2009 (UTC)
- Oh, ugh! I wish you would have put a disturbing picture warning on that. When you say "unusual", does that mean it's unusual for the nail to return? 99.245.92.47 (talk) 15:35, 11 March 2009 (UTC)
- Perhaps of interest: one of my goats had his horns burned off as a baby, and now only sad and deformed little nubs grow back. Horns and nails are anatomically similar. --Sean 16:31, 11 March 2009 (UTC)
- Removing the nail plate alone is usually not enough. It is necessary to remove the nail matrix as well. Most doctors use phenol to ablate the nail matrix. The quoted recurrence rate is 16–28%. [Sorry for not placing a warning about my previous message.] Axl ¤ [Talk] 17:52, 11 March 2009 (UTC)
- As an aside, if a nail "falls off" due to a subungual hematoma, does it grow back? Also, Wikipedia is not censored, so sometimes we have disturbing images. ~AH1(TCU) 21:39, 11 March 2009 (UTC)
A few years ago, I lost an index fingernail after a momentary lapse of attention with a barbell. That fingertip was naked for a couple of weeks, but it grew back completely normally. Dobermanji (talk) 02:49, 12 March 2009 (UTC)
- I once lost the nail of my index finger after an accident with hot (well, boiling) cooking oil. It eventually did grow back. Aside from a few shallow vertical grooves on the nail's surface, it looks pretty much as it did before too. --Kurt Shaped Box (talk) 03:18, 12 March 2009 (UTC)
dark matter 2 questions
1. Is there any circumstance where dark matter interacts with regular matter? has an attractive of repulsive effect on it for example?
2. Is dark matter only theorized to exist in space or could there be some in the room with me right now? —Preceding unsigned comment added by 79.68.243.251 (talk) 15:03, 11 March 2009 (UTC)
- Dark matter will defnitaly interact with normal matter gravitationally and attract it. That's how we know about dark matter to begin with. Under the WIMP (Weakly Interacting Massive Particles) model for dark matter, those particles also interact with normal matter through very weak interactions. WIMPs are considered the best candidates for dark matter nowadays. If the WIMP model is right, those particles are zipping through your body right now completely unoticed. Dauto (talk) 15:31, 11 March 2009 (UTC)
Gibb's free energy of a reaction
We know that delta G of a reaction being negetive then the reaction occur to considerable extent but revers is possible in a reaction which I know as nonspontenous reaction.Supriyochowdhury (talk) 17:53, 11 March 2009 (UTC)
- Did you forget to ask a question? Dauto (talk) 19:26, 11 March 2009 (UTC)
Poison Ivy Tolerance
Going camping soon and my friends are loading up on poison ivy treatments. I never got that rash so I must be immune to it. My friends said it is because I am Native American. They are assuming that Native Americans are immune to this. While all the NA's I know also do not develop this rash, I think that it doesn't have anything to do with race. Before I leave, I want to be able to spit out some proof. Is it possible to NA's to be naturally immune to poison ivy/oak/sumac?--Emyn ned (talk) 17:53, 11 March 2009 (UTC)
Wait, there isn't gonna be any ivy now at this time of the year, right? --Emyn ned (talk) 18:09, 11 March 2009 (UTC)
- To answer your second question first, if there is poison ivy out there it will still be able to cause a reaction. This reference notes that "the leafless vines can cause a reaction in winter because all parts of the plant, with the possible exception of the pollen, contain urushiol." Urushiol is the component that causes the rash, which is formally known as urushiol-induced contact dermatitis. Some 15 to 30 percent of people have little or no reaction to uroshiol but I've found no reputable source suggesting that Native Americans are any more likely to be in that group. Sources also suggest that repeated exposure can sensitize people such that they start to develop a reaction. So the fact that you have never had a reaction does not mean that you never will; with repeated exposure you could become susceptible.
- This reference notes that "some cultures, including certain Native American cultures, have used homeopathic treatment for poison ivy, oak, or sumac as a means of preventing the rash." I would assume that if they needed to treat the rash, they probably were not immune. Some people claim that eating poison ivy leaves can help produce immunity but this isn't supported by research. As the reference states, "stories of successful prevention of rash through eating the leaves are common, but research studies have failed to reproduce these results without the people involved in the studies developing mild to serious side effects." - EronTalk 18:37, 11 March 2009 (UTC)
- I seriously doubt that native americans have traditionally used homeopathy given that it was created in europe little more then 200 years ago. Dauto (talk) 19:02, 11 March 2009 (UTC)
- I would assume that the reference means homeopathic-type remedies, given that it goes on to discuss eating poison ivy leaves as a means of developing immunity to the rash. - EronTalk 19:06, 11 March 2009 (UTC)
- I seriously doubt that native americans have traditionally used homeopathy given that it was created in europe little more then 200 years ago. Dauto (talk) 19:02, 11 March 2009 (UTC)
- But that's not homeopathy. Dauto (talk) 19:24, 11 March 2009 (UTC)
- Perhaps you should take your concerns up with the good people at WebMD who posted the article I linked to. In any case, whether or not Native Americans practiced homeopathy or whether their treatments could be described as being like homeopathy is beside the point. The OP wanted to know if Native Americans are immune to poison ivy. I suggested that as there is evidence they developed treatments - of some kind - for the poison ivy rash, it is unlikely they were immune to it. - EronTalk 19:28, 11 March 2009 (UTC)
- More likely than not they're talking about something akin to Desensitization (medicine), which is not homeopathy per se. SDY (talk) 22:00, 11 March 2009 (UTC)
- Being immune to Poison Ivy is relatively common. This Straight Dope article says about 15%, but they don't cite a source. APL (talk) 19:50, 11 March 2009 (UTC)
- As I recall, they tested a bunch of poison ivy cures on Mythbusters, and that proved to be surprisingly difficult for them because of a statistically unlikely occurrence: they had trouble finding a cast member who wasn't immune to it, and ended up having to use one of the crew members as a test bed. -- Captain Disdain (talk) 22:37, 11 March 2009 (UTC)
- Being immune to Poison Ivy is relatively common. This Straight Dope article says about 15%, but they don't cite a source. APL (talk) 19:50, 11 March 2009 (UTC)
- Anectodal experience: you can build up an immunity to poison ivy / poison oak. My father used to react to poison ivy when he was young. Then one day he had to wade through a field of the stuff, cutting and pulling the plants, etc. Naturally a horrible rash ensued. However, after that incident, poison ivy never bothered him again. I remember growing up, the rest of the family had to be careful not to touch him after a walk in the woods, because he had stopped paying attention to the poison ivy. ~Amatulić (talk) 01:52, 12 March 2009 (UTC)
- While I'm willing to believe that can happen (allergies being notoriously fickle), the more common experience is that urushiol dermatitis gets more severe with each succesive exposure. I very much do not recommend that anyone try this approach. --Trovatore (talk) 01:58, 12 March 2009 (UTC)
- I'm not recommending it either, just saying what happened with my Dad. In his case, he had a few exposures followed by an unavoidable huge massive exposure, equivalent to rolling naked in a pile of poison ivy. Whatever his body had to do to deal with that, seemed to have resulted in a permanent immunity. The thought of doing this deliberately makes me quail. I certainly wouldn't assume one man's experience is applicable to anyone else, especially me. ~Amatulić (talk) 02:04, 12 March 2009 (UTC)
nearsighted from reading?
do kids who read all through adolescence (and end up professors) end up nearsighted as a result, needing glasses to see far away, and kids who play outside all day end up needing no glasses normally as adults but reading glasses to see things up close, for example to read their utility bills? Or is there no correlation... —Preceding unsigned comment added by 92.230.65.185 (talk) 19:10, 11 March 2009 (UTC)
- As a kid who read all through adolesence and as an adult requires no glasses of any kind, and I have better eyesight than my friends who played outside all day, I'd say there's no correlation, but that's OR -- Mad031683 (talk) 20:00, 11 March 2009 (UTC)
- This is OR as well, but I've spent a good portion of my time as a child and early adoloscent reading, watching TV, or using the computer. Nowadays, I have glasses but only use them occasionally. I've heard that wearing glasses will cause eyes to become accustomed to the glasses and less so to the naked-eye vision, but I don't think this is proven. ~AH1(TCU) 21:30, 11 March 2009 (UTC)
what is the most false thing generally accepted in science as true?
What is the most false thing generally accepted in science as true? Thank you. —Preceding unsigned comment added by 92.230.65.185 (talk) 22:34, 11 March 2009 (UTC)
- Isn't that a bit of a contradiction? If it's "most false", i.e. very not true, then it wouldn't be accepted as true in science. —Cyclonenim (talk · contribs · email) 22:43, 11 March 2009 (UTC)
- Many physical "laws" fall apart on a certain level and could be considered "false" on that account. One doesn't always equal one, for example in the amount of energy needed for acceleration at relativistic speeds. Many things in science are just "best guesses" or "good enough" because they are consistent with experimental data. There are many assumptions made for the sake of simplicity, usually because the simplification is not expected to affect results. I agree that the original question is far too broad and vague to be answered, but "not true equals not science" is misleading. SDY (talk) 22:53, 11 March 2009 (UTC)
- Science doesn't really have "false things accepted as true". The closest thing would probably be "useful approximations": for example, Newtonian mechanics isn't correct, but it's commonly used because the math is much easier than that of general relativity, and the answers are usually close enough. --Carnildo (talk) 23:30, 11 March 2009 (UTC)
Do you mean what was accepted by scientists as true that was later proven false? 12.216.168.198 (talk) 23:48, 11 March 2009 (UTC)
- That happens on a semi-regular basis. See T. Kuhn's The Structure of Scientific Revolutions, probably the best known work on how science changes. It gave us the expression "paradigm shift." Usually those changes are incremental and are a refinement of previous thinking on the subject, but every so often someone like Einstein comes along and makes a bit of a ruckus. Sometimes it's someone like Galileo coming out and saying what's already been said even though it's unpopular and uncomfortable, sometimes it's someone like Freud asking questions that previously would have been considered inappropriate (Freud's answers to those questions have since fallen victim to the same phenomenon, but the questions were good). SDY (talk) 00:11, 12 March 2009 (UTC)
The fact that 2 + 2 = 5 is false is generally accepted in science to be true. 219.102.220.90 (talk) 03:43, 12 March 2009 (UTC)
- What about for really large values of 2? DMacks (talk) 04:42, 12 March 2009 (UTC)
- 2+2 does not equal 5, but 2. + 2. does equal 5. for large values of 2. That's more of a programming joke though. SDY (talk) 04:56, 12 March 2009 (UTC)
Pancreatic cancer
This is kind of a follow on question from someone else's above. Why aren't pancreatic transplants a suitable form of treatment for pancreatic cancer that has not metastasized elsewhere? I know it's sometimes hard to tell how malignant a cancer is, but caught early enough and being low enough grade, isn't this cancer treatable via transplant? —Cyclonenim (talk · contribs · email) 23:28, 11 March 2009 (UTC)
- From Pancreas transplantation:
- "Patients with pancreatic cancer are not eligible for valuable pancreatic transplantations, since the condition has a very high mortality rate and the disease, being highly malignant, could and probably would soon return."
- --Carnildo (talk) 23:35, 11 March 2009 (UTC)
- Just to add to the above. Pancreatic cancer is particularly nasty in it's silence. It grows and metastasises without symptoms. Lung cancer gives you haemoptysis, bowel cancer gives you bloody stools, brain tumours cause neurological symptoms. Pancreatic cancer causes little visible signs or symptoms until it's too late, and then it's everywhere. Fribbler (talk) 23:39, 11 March 2009 (UTC)
- I had read the above quote which is what sparked my question. I'm aware that it has a high mortality rate and malignancy. However, thanks Fribbler, it's merely a case of "you just can't be sure if it's spread", then? —Cyclonenim (talk · contribs · email) 23:57, 11 March 2009 (UTC)
- "Merely" is a dangerous word in the multi-faceted world of medicine :-) , but that is the basic idea. It's what makes testicular/breast/skin cancer so curable (the lumps are obvious) vs. pancreatic, liver, kidney tumours etc. that silently metastasise without outward notice. Fribbler (talk) 00:14, 12 March 2009 (UTC)
- Transplantable organs are always in short supply. They need to figure out where they're going to do the most good. APL (talk) 01:41, 12 March 2009 (UTC)
- I had read the above quote which is what sparked my question. I'm aware that it has a high mortality rate and malignancy. However, thanks Fribbler, it's merely a case of "you just can't be sure if it's spread", then? —Cyclonenim (talk · contribs · email) 23:57, 11 March 2009 (UTC)
- Just to add to the above. Pancreatic cancer is particularly nasty in it's silence. It grows and metastasises without symptoms. Lung cancer gives you haemoptysis, bowel cancer gives you bloody stools, brain tumours cause neurological symptoms. Pancreatic cancer causes little visible signs or symptoms until it's too late, and then it's everywhere. Fribbler (talk) 23:39, 11 March 2009 (UTC)
- The major functions of the pancreas can be achieved with medical treatment: enzyme supplements (Creon) and insulin. Whipple procedure usually involves just the head of the pancreas, although is sometimes extended to full pancreatectomy. Pancreas transplantation, like other organ transplants, requires immunosuppressive drugs to prevent transplant rejection. Therefore pancreatic transplant is usually reserved for diabetic people who have very erratic blood sugar control despite insulin. Often, these people also have kidney transplantation as well (for renal failure) so they would require immunosuppressants anyway. Axl ¤ [Talk] 08:14, 12 March 2009 (UTC)
March 12
Chemical reaction writing programs
Anyone here know of any good (preferably free) programs for drawing chemical reactions, with lewis bonds, electron pushing, etc? (PS: I use Windows). Thanks. Someguy1221 (talk) 04:51, 12 March 2009 (UTC)
- I recommend ISIS/Draw and MarvinSketch to my organic students. DMacks (talk) 05:02, 12 March 2009 (UTC)
- One way or another ISIS/Draw was acquired by Symyx (I think when Symyx bought MDL for their electronic notebook). In any case ISIS/Draw doesn't appear to be freely available anymore. Molecule editors appears to have a few example of open source programs.--OMCV (talk) 05:52, 12 March 2009 (UTC)
- There is a Symyx Draw no-fee version. Obviously not free-as-in-speech, but still no-cash-outlay-to-use. DMacks (talk) 06:05, 12 March 2009 (UTC)
- Thanks, with ChemDraw move to a license model I might end up moving back to ISIS someday soon.--OMCV (talk) 06:08, 12 March 2009 (UTC)
- There is a Symyx Draw no-fee version. Obviously not free-as-in-speech, but still no-cash-outlay-to-use. DMacks (talk) 06:05, 12 March 2009 (UTC)
- One way or another ISIS/Draw was acquired by Symyx (I think when Symyx bought MDL for their electronic notebook). In any case ISIS/Draw doesn't appear to be freely available anymore. Molecule editors appears to have a few example of open source programs.--OMCV (talk) 05:52, 12 March 2009 (UTC)
Heat in the human brain
Does the human brain, like a computer's CPU, produce heat at a rate proportional to the rate of processing it performs? NeonMerlin 05:10, 12 March 2009 (UTC)
- Increased blood flow is very well correlated with increased neural activity (see Functional magnetic resonance imaging) but it's not clear what the purpose is. It'd be awesome if we could say that increased firing rates of neuron's caused an increased use of oxygen (and by extension, an increase in heat, not that that's what neuroscientists care about, to my knowledge). But as the article explains, it's not nearly that simple, and is still being actively researched. Someguy1221 (talk) 05:59, 12 March 2009 (UTC)
- this may help I don't have a pubmed access card anymore (but if you go to university, it is free to get one. 71.54.173.193 (talk) 10:57, 12 March 2009 (UTC)