Ground (electricity): Difference between revisions
→Circuit ground versus earth: Technically misleading reference to electric potential deleted |
|||
Line 61: | Line 61: | ||
=== Circuit ground versus earth === |
=== Circuit ground versus earth === |
||
[[Voltage]] is a differential quantity |
[[Voltage]] is a differential quantity. To measure the voltage of a single point, a reference point must be selected to measure against. This common reference point is called [[ground]] and considered to have zero voltage. This [[Single-ended signaling|signal ground]] may or may not actually be connected to a [[Ground (power)|power ground]]. A system where the system ground is not actually connected to another circuit or to earth (though there may still be AC coupling) is often referred to as a [[floating ground]]. |
||
=== Separating low signal ground from a noisy ground === |
=== Separating low signal ground from a noisy ground === |
Revision as of 16:07, 11 April 2009
This article may be too technical for most readers to understand.(January 2009) |
In electrical engineering, ground or earth may be the reference point in an electrical circuit from which other voltages are measured, or a common return path for electric current, or a direct physical connection to the Earth.
Electrical circuits may be connected to ground (earth) for several reasons. In mains powered equipment, exposed metal parts are connected to ground to prevent contact with a dangerous voltage if electrical insulation fails. A connection to ground limits the voltage built up between power circuits and the earth, protecting circuit insulation from damage due to excessive voltage. Connections to ground limits the build-up of static electricity when handling flammable products or when repairing electronic devices. In some telegraph and power transmission circuits, the earth itself can be used as one conductor of the circuit, saving the cost of installing a separate return conductor.
For measurement purposes, the Earth serves as a (reasonably) constant potential reference against which other potentials can be measured. An electrical ground system should have an appropriate current-carrying capability in order to serve as an adequate zero-voltage reference level. In electronic circuit theory, a "ground" is usually idealized as an infinite source or sink for charge, which can absorb an unlimited amount of current without changing its potential. Where a ground connection has a significant resistance, the approximation of zero potential is no longer valid. Stray voltages or earth potential rise effects will occur, which may create noise in signals or if large enough will produce an electric shock hazard.
The use of the term ground (or earth) is so common in electrical and electronics applications that circuits in vehicles such as ships, aircraft, and spacecraft may be spoken of as having a "ground" connection without any actual connection to the Earth.
US vs. UK usage
The term "ground" and "grounding" are used in US electrical engineering to represent electrical equipment that is securely bonded to the ground (i.e., that on which we stand) for safety reasons. In the UK the equivalent terms are "earth" and "earthing".
History
Long-distance electromagnetic telegraph systems from 1820 onwards used two or more wires to carry the signal and return currents. It was then discovered, probably by the German scientist Carl August Steinheil in 1836-1837 [1], that the ground could be used as the return path to complete the circuit, making the return wire unnecessary. However, there were problems with this system, exemplified by the transcontinental telegraph line constructed in 1861 by the Western Union Company between Saint Joseph, Missouri, and Sacramento, California. During dry weather, the ground connection often developed a high resistance, requiring water to be poured on the ground rod to enable the telegraph to work or phones to ring.
Later, when telephony began to replace telegraphy, it was found that the currents in the earth induced by power systems, electrical railways, other telephone and telegraph circuits, and natural sources including lightning caused unacceptable interference to the audio signals, and the two-wire system was reintroduced.
Radio communications
An electrical connection to earth can be used as a reference potential for radio frequency signals for certain kinds of antennas. The part directly in contact with the earth (the "earth electrode") can be as simple as a metal rod or stake driven into the earth (Fig. 1), or a connection to buried metal water piping (though this carries the risk of the water pipe being later replaced with plastic). Because high frequency signals can flow to earth through capacitance, capacitance to ground is an important factor in effectiveness of signal grounds. Because of this a complex system of buried rods and wires can be effective. An ideal signal ground maintains zero voltage regardless of how much electrical current flows into ground or out of ground. The resistance at the signal frequency of the electrode-to-earth connection determines its quality, and that quality is improved by increasing the surface area of the electrode in contact with the earth, increasing the depth to which it is driven, using several connected ground rods, increasing the moisture of the soil, improving the conductive mineral content of the soil, and increasing the land area covered by the ground system.
Some types of transmitting antenna systems in the VLF, LF, MF and lower SW range depend on a good ground to operate efficiently. For example, a vertical monopole antenna requires a ground plane that often consists of an interconnected network of wires running radially away from the base of the antenna for a distance about equal to the height of the antenna. Sometimes such a ground plane is supported above ground to reduce losses.
AC power wiring installations
In a mains electricity (AC power) wiring installation, the ground is a wire with an electrical connection to earth. By connecting the cases of electrical equipment to earth, any insulation failure will result in current flowing to ground that would otherwise energize the case of the equipment. A proper bonding to earth will result in the circuit overcurrent protection operating to de-energize the faulty circuit. By bonding (interconnecting) all exposed non-current carrying metal objects together, any fault currents in the system will not produce dangerous voltages which could cause electric shock.
The mains "grounding conductor" is connected — directly or indirectly — to one or more earth electrodes. These may be local, far away in the supplier's network, or in many cases both. The grounding conductor is usually but not always connected to the "neutral wire" at some point, and they may even share a common conductor for part of the system under some conditions. The ground wire is also usually bonded to pipework to keep it at the same potential as the electrical ground during a fault. In the past, water supply pipes were often used as ground electrodes, but this was banned in some countries when plastic pipe such as PVC became popular. This type of ground applies to radio antennas and to lightning protection systems.
A mains or "power ground" serves to provide a return path for fault currents and therefore allows a fuse or breaker to disconnect the circuit. The power ground is also often bonded to a house's incoming pipework, and pipes and cables entering the bathroom are sometimes cross-bonded. This is done to try to reduce the potential difference between objects that can be touched simultaneously. Filters also connect to the power ground, but this is mainly to stop the power ground carrying noise into the systems which the filters protect, rather than as a direct use of the power ground.
Permanently installed electrical equipment usually also has permanently connected grounding conductors. Portable electrical devices with metal cases may have them connected to earth ground by a pin in the interconnecting plug. (see Domestic AC power plugs and sockets). The size of power ground conductors is usually regulated by local or national wiring regulations.
Power transmission
Some HVDC power transmission systems use the ground as second conductor. This is especially common in schemes with submarine cables as sea water is a good conductor. Buried grounding electrodes are used to make the connection to the earth. The site of these electrodes must be chosen very carefully in order to prevent electrochemical corrosion on underground structures.
In Single Wire Earth Return (SWER) AC electrical distribution systems, costs are saved by using just a single high voltage conductor for the power grid, while routing the AC return current through the earth. This system is mostly used in rural areas where large earth currents will not otherwise cause hazards.
A particular concern in design of electrical substations is earth potential rise. When very large fault currents are injected into the earth, the area around the point of injection may rise to a high potential with respect to distant points. This is due to the limited finite conductivity of the layers of soil in the earth. The gradient of the voltage (changing voltage within a distance) may be so high that two points on the ground may be at significantly different potentials, creating a hazard to anyone standing on the ground in the area. Pipes, rails, or communication wires entering a substation may see different ground potentials inside and outside the substation, creating a dangerous touch voltage.
Electronics
Signal grounds serve as return paths for signals and power (at extra low voltages, i.e., less than about 50 V) within equipment, and on the signal interconnections between equipment. Many electronic designs feature a single return that acts as a reference for all signals. Power and signal grounds often get connected together, usually through the metal case of the equipment.
Circuit ground versus earth
Voltage is a differential quantity. To measure the voltage of a single point, a reference point must be selected to measure against. This common reference point is called ground and considered to have zero voltage. This signal ground may or may not actually be connected to a power ground. A system where the system ground is not actually connected to another circuit or to earth (though there may still be AC coupling) is often referred to as a floating ground.
Separating low signal ground from a noisy ground
In television stations, recording studios, and other installations where sound quality is critical, a special signal ground known as a "technical ground" (or "technical earth") is often installed, to prevent ground loops. This is basically the same thing as an AC power ground, but no appliance ground wires are allowed any connection to it, as they may carry electrical interference. In most cases, the studio's metal equipment racks are all joined together with heavy copper cables (or flattened copper tubing or busbars) and similar connections are made to the technical ground. Great care is taken that no AC-grounded appliances are placed on the racks, as a single AC ground connection to the technical ground will destroy its effectiveness. For particularly demanding applications, the main technical ground may consist of a heavy copper pipe, if necessary fitted by drilling through several concrete floors, such that all technical grounds may connected by the shortest possible path to a grounding rod in the basement.
Lightning protection systems
Lightning protection systems are special grounding systems designed to safely conduct the extremely high voltage currents associated with lightning strikes.
Earthing system
In electricity supply systems, an earthing (grounding) system defines the electrical potential of the conductors relative to that of the Earth's conductive surface. The choice of earthing system has implications for the safety and electromagnetic compatibility of the power supply. Note that regulations for earthing systems vary considerably between different countries.
A functional earth connection serves a purpose other than providing protection against electrical shock. In contrast to a protective earth connection, a functional earth connection may carry a current during the normal operation of a device. Functional earth connections may be required by devices such as surge suppression and electromagnetic-compatibility filters, some types of antennas and various measurement instruments. Generally the protective earth is also used as a functional earth, though this requires care in some situations.
Ground mat
A ground mat or grounding mat is a flat, flexible pad used for working on electrostatic sensitive devices. It is generally made of a conductive plastic or metal mesh covered substrate which is electrically attached to ground. This helps discharge any static which a worker has built up, as well as any static on tools or exposed components laid on the mat. It is used most commonly in computer repair. Ground mats are also found on fuel trucks, which are otherwise insulated from ground as they make physical contact only with their (rubber and air) tires; obviously static discharge is undesirable during fuel-transfer operations. Similarly, in aircraft refueling, a ground cable connects the tanker (truck or airplane) to the fuel-seeking craft to eliminate charge differences before fuel is transferred.
In an electrical substation a ground mat is a mesh of conductive material installed at places where a person would stand to operate a switch or other apparatus; it is bonded to the local supporting metal structure and to the handle of the switchgear, so that the operator will not be exposed to a high differential voltage due to a fault in the substation.
See also
- Domestic AC power plugs and sockets
- Earthing systems
- Ground constants
- Virtual ground
- Ground loop
- Phantom circuit
- Phantom loop
- Double switching
- Ufer Ground
Notes
- ^ Electrical and electronics diagrams, IEEE Std 315-1975, Section 3.9: Circuit return.
References
- Federal Standard 1037C in support of MIL-STD-188
External links
- The Electromagnetic Telegraph, by J. B. Calvert
- Grounding for Low- and High- Frequency Circuits (PDF) — Analog Devices Application Note
- An IC Amplifier User’s Guide to Decoupling, Grounding, and Making Things Go Right for a Change (PDF) — Analog Devices Application Note