Jump to content

Ethylenediaminetetraacetic acid: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 67: Line 67:
...
...


....
== See also ==
* [[EGTA (chemical)|EGTA]]
* [[BAPTA]]


== Notes & References==
== Notes & References==

Revision as of 12:46, 30 September 2009

Ethylenediaminetetraacetic acid
Ball and stick model of the EDTA molecule, in the zwitterionic form found in the solid state
Names
IUPAC name
2,2',2'',2'''-(ethane-1,2-diyldinitrilo)tetraacetic acid
Other names
EDTA, Y, H4EDTA, Diaminoethanetetraacetic acid, Edetic acid, Edetate, Ethylenedinitrilotetraacetic acid, Versene, Ethylene diamine tetraacetic acid, ethylenediaminetetraacetate, 2-[2-(Bis(carboxymethyl)amino) ethyl-(carboxymethyl)amino]acetic acid
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.000.409 Edit this at Wikidata
RTECS number
  • AH4025000
  • OC(CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O)=O
Properties
C10H16N2O8
Molar mass 292.24
Density 0.86 g/cm3
Melting point 237–245 °C (dec.)
Acidity (pKa) pK1=0.0 (CO2H) (µ=1.0)
pK2=1.5 (CO2H) (µ=0.1)
pK3=2.00 (CO2H) (µ=0.1)
pK4=2.69 (CO2H) (µ=0.1)
pK5=6.13 (NH+) (µ=0.1)
pK6=10.37 (NH+) (µ=0.1)[1]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
irritant
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability (yellow): no hazard codeSpecial hazards (white): no code
1
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

EDTA is a widely used initialism for the chemical compound ethylenediaminetetraacetic acid (which has many other names, see Table). EDTA is a polyamino carboxylic acid with the formula [CH2N(CH2CO2H)2]2. This colourless, water-soluble solid is widely used to dissolve scale. Its usefulness arises because of its role as a chelating agent, i.e. its ability to "sequester" metal ions such as Ca2+ and Fe3+. After being bound by EDTA, metal ions remain in solution but exhibit diminished reactivity. EDTA is produced as several salts, notably disodium EDTA and calcium disodium EDTA.

No I did

No I did

Coordination chemistry principles

Metal-EDTA chelate

In coordination chemistry, EDTA4- is a member of the polyamino carboxylic acid family of ligands. EDTA4- usually binds to a metal cation through its two amines and four carboxylates. Many of the resulting coordination compounds adopt octahedral geometry. Although of little consequence for its applications, these octahedral complexes are chiral. The anion [Co(edta)] has been resolved into enantiomers.[2] Many complexes of EDTA4- adopt more complex structures due to (i) the formation of an additional bond to water, i.e. seven-coordinate complexes, or (ii) the displacement of one carboxylate arm by water. Early work on the development of EDTA was undertaken by Gerold Schwarzenbach in the 1940s.[3] EDTA forms especially strong complexes with Mn(II), Cu(II), Fe(III), Pb (II) and Co(III).[4]

Several features of EDTA's complexes are relevant to its applications. First, because of its high denticity, this ligand has a high affinity for metal cations:

[Fe(H2O)6]3+ + H4EDTA [Fe(edta)]- + 6 H2O + 4 H+ (Keq = 1025.1)

Written in this way, the equilibrium quotient shows that metal ions compete with protons for binding to EDTA. Because metal ions are extensively enveloped by EDTA, their catalytic properties are often suppressed. Finally, since complexes of EDTA4- are anionic, they tend to be highly soluble in water. For this reason, EDTA is able to dissolve deposits of metal oxides and carbonates.

Uses

NO I DID

GOT HERE FIRST

...

...

...

....

Notes & References

  1. ^ Harris, D.C. "Quantitative Chemical Analysis", 7th ed., W. H. Freeman and Compagny, New York, 2007
  2. ^ Kirchner, S. Barium (Ethylenediaminetetracetato) Cobalt(III) 4-Hydrate" Inorganic Syntheses, 1957, Volume 5, pages 186-188.
  3. ^ Edta - Motm
  4. ^ Holleman, A. F. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 0-12-352651-5. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)