Jump to content

User talk:Hayson1991/mathpage: Difference between revisions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Content deleted Content added
Hayson1991 (talk | contribs)
TingTing's Problem: new section
Line 194: Line 194:
<math>\approx 2.304\times\left(2.34213\div 3.16\times\frac{1}{2}\right)+4.608</math><br /><br />
<math>\approx 2.304\times\left(2.34213\div 3.16\times\frac{1}{2}\right)+4.608</math><br /><br />
<math>\approx 5.857</math>
<math>\approx 5.857</math>

== TingTing's Problem ==

Because of <math>y''' = -8 y + 5\,</math> and <math>y = e^{-2x} + B x^3 + C x^2 + D x + E\,</math>:<br /><br />
<math>y''' = -8 \left( e^{-2x} + B x^3 + C x^2 + D x + E\right) + 5\,</math><br /><br /><br />

<math>y = e^{-2x} + B x^3 + C x^2 + D x + E\,</math><br /><br />
<math>y' = -2 e^{-2x} + 3B x^2 + 2C x + D\,</math><br /><br />
<math>y'' = 4 e^{-2x} + 3 \cdot 2B x + 2C\,</math><br /><br />
<math>y''' = -8 e^{-2x} + 3 \cdot 2B = -8 e^{-2x} + 6B\,</math><br /><br /><br />

Since <math>y''' = -8 e^{-2x} + 6B\,</math> and <math>y''' = -8 \left( e^{-2x} + B x^3 + C x^2 + D x + E\right) + 5\,</math>:<br /><br />
<math>-8 e^{-2x} + 6B = -8 \left( e^{-2x} + B x^3 + C x^2 + D x + E\right) + 5\,</math><br /><br />
<math>6B = -8 B x^3 -8 C x^2 -8 D x -8E + 5\,</math><br /><br />
<math>0 x^3 + 0 x^2 + 0 x + 6B = -8 B x^3 -8 C x^2 -8 D x -8E + 5\,</math><br /><br /><br />

Therefore:<br />
<math>
\begin{cases}
0 = -8 B\, \\
0 = -8 C\, \\
0 = -8 D\, \\
6B = -8E + 5\,
\end{cases}
</math><br /><br />
<math>
\begin{cases}
B = 0\, \\
C = 0\, \\
D = 0\, \\
E = \frac{5}{8}\,
\end{cases}
</math><br /><br /><br />

<math>y = e^{-2x} + B x^3 + C x^2 + D x + E\,</math><br /><br />
<math>y = e^{-2x} + \frac{5}{8}\,</math><br /><br />

Revision as of 06:07, 12 November 2009



(Chain rule, derivative of tan=sec^2)







9~













Multiple u's

To Find dy/dx for


The way she explains it

you'll make 3 u's






Gaaah, help~~

Find then find





Find first derivative





Find second derivative





















Clock Problem ~

minute hand





hour hand





Piston speed ~















Feon's Question 1~

Solution 1





Solution 2

















Feon's Question 2







Feon's Question 3~~













Last Part

















ln derivative







ln derivative 2~



Difference

For the original function f:

1

2

TingTing's Physics Problem ~








How to do logs without a calculator.

Memorization

There are 2 constants you have to memorize:



Method

Example 1













Example 2













Example 3













Example 4



















TingTing's Problem

Because of and :













Since and :








Therefore: