Arc length: Difference between revisions
Line 32: | Line 32: | ||
==Finding arc lengths by integrating== |
==Finding arc lengths by integrating== |
||
{{See also|Differential_geometry_of_curves#Length_and_natural_parametrization}} |
|||
Consider a real [[function (mathematics)|function]] ''f''(''x'') such that ''f''(''x'') and ''f''′(''x'') (its derivative with respect to ''x'') are [[continuous function|continuous]] on [[Interval (mathematics)|[''a'', ''b''] ]]. The length ''s'' of the part of the graph of ''f'' between ''x'' = ''a'' and ''x'' = ''b'' is found by the formula |
Consider a real [[function (mathematics)|function]] ''f''(''x'') such that ''f''(''x'') and ''f''′(''x'') (its derivative with respect to ''x'') are [[continuous function|continuous]] on [[Interval (mathematics)|[''a'', ''b''] ]]. The length ''s'' of the part of the graph of ''f'' between ''x'' = ''a'' and ''x'' = ''b'' is found by the formula |
||
Revision as of 23:38, 14 December 2009
Determining the length of an irregular arc segment—also called rectification of a curve—was historically difficult. Although many methods were used for specific curves, the advent of calculus led to a general formula that provides closed-form solutions in some cases.
General approach
A curve in, say, the plane can be approximated by connecting a finite number of points on the curve using line segments to create a polygonal path. Since it is straightforward to calculate the length of each linear segment (using the Pythagorean theorem in Euclidean space, for example), the total length of the approximation can be found by summing the lengths of each linear segment.
If the curve is not already a polygonal path, better approximations to the curve can be obtained by following the shape of the curve increasingly more closely. The approach is to use an increasingly larger number of segments of smaller lengths. The lengths of the successive approximations do not decrease and will eventually keep increasing—possibly indefinitely, but for smooth curves this will tend to a limit as the lengths of the segments get arbitrarily small.
For some curves there is a smallest number L that is an upper bound on the length of any polygonal approximation. If such a number exists, then the curve is said to be rectifiable and the curve is defined to have arc length L.
Definition
Let C be a curve in Euclidean (or, more generally, a metric) space X = Rn, so C is the image of a continuous function f : [a, b] → X of the interval [a, b] into X.
From a partition a = t0 < t1 < ... < tn−1 < tn = b of the interval [a, b] we obtain a finite collection of points f(t0), f(t1), ..., f(tn−1), f(tn) on the curve C. Denote the distance from f(ti) to f(ti+1) by d(f(ti), f(ti+1)), which is the length of the line segment connecting the two points.
The arc length L of C is then defined to be
where the supremum is taken over all possible partitions of [a, b] and n is unbounded.
The arc length L is either finite or infinite. If L < ∞ then we say that C is rectifiable, and is non-rectifiable otherwise. This definition of arc length does not require that C is defined by a differentiable function. In fact in general, the notion of differentiability is not defined on a metric space.
A curve may be parameterized in many ways. Suppose C also has the parameterization g : [c, d] → X. Then there is a continuous monotone function S from [a, b] to [c, d] so that g(S(t)) = f(t) and an inverse function S−1 from [c, d] to [a, b]. It is clear that any sum of the form can be made equal to a sum of the form by taking , and similarly a sum involving g can be made equal to a sum involving f. So the arc length is an intrinsic property of the curve, meaning that it does not depend on the choice of parameterization.
The definition of arc length for the curve is analogous to the definition of the total variation of a real-valued function.
Finding arc lengths by integrating
Consider a real function f(x) such that f(x) and f′(x) (its derivative with respect to x) are continuous on [a, b] . The length s of the part of the graph of f between x = a and x = b is found by the formula
which is derived from the distance formula approximating the arc length with many small lines. As the number of line segments increases (to infinity by use of the integral) this approximation becomes an exact value.
If a curve is defined parametrically by x = X(t) and y = Y(t), then its arc length between t = a and t = b is
This is more clearly a consequence of the distance formula where instead of a Δx and Δy , we take the limit. A useful mnemonic is
If a function is defined in polar coordinates by r = f(θ) then the arc length is given by
In most cases, including even simple curves, there are no closed-form solutions of arc length and numerical integration is necessary.
Curves with closed-form solution for arc length include the catenary, circle, cycloid, logarithmic spiral, parabola, semicubical parabola and (mathematically, a curve) straight line. The lack of closed form solution for the arc length of an elliptic arc led to the development of the elliptic integrals.
Derivation
In order to approximate the arc length of the curve, it is split into many linear segments. To make the value exact, and not an approximation, infinitely many linear elements are needed. This means that each element is infinitely small. This fact manifests itself later on when an integral is used.
Begin by looking at a representative linear segment (see image) and observe that its length (element of the arc length) will be the differential ds. We will call the horizontal element of this distance dx, and the vertical element dy.
The Pythagorean theorem tells us that
Since the function is defined in time, segments (ds) are added up across infintesimally small intervals of time (dt) yielding the integral
If y is a function of x, so that we could take t = x, then we have:
which is the arc length from x = a to x = b of the graph of the function ƒ.
For example, the curve in this figure is defined by
Subsequently, the arc length integral for values of t from −1 to 1 is
Using computational approximations, we can obtain a very accurate (but still approximate) arc length of 2.905. An expression in terms of the hypergeometric function can be obtained: it is
Another way to obtain the integral formula
Suppose that there exists a rectifiable curve given by a function f(x). To approximate the arc length S along f between two points a and b in that curve, construct a series of right triangles whose concatenated hypotenuses "cover" the arc of curve chosen as shown in the figure. For convenience, the bases of all those triangles can be set equal to , so that for each one an associated exists. The length of any given hypotenuse is given by the Pythagorean Theorem:
The summation of the lengths of the hypotenuses approximates :
Multiplying the radicand by produces:
Then, our previous result becomes:
As the length of these segments decreases, the approximation improves. The limit of the approximation, as goes to zero, is equal to :
Use in Geometry / Trigonometry
Arc Length is not the same as Arc Measure.
In simpler terms, Arc Length = Central Angle / 360° multiplied by the circumference.
To find circumference use the formula "C=2 πR or C=πD"
In a semicircle, Arc Length = πR
Historical methods
Ancient
For much of the history of mathematics, even the greatest thinkers considered it impossible to compute the length of an irregular arc. Although Archimedes had pioneered a way of finding the area beneath a curve with his method of exhaustion, few believed it was even possible for curves to have definite lengths, as do straight lines. The first ground was broken in this field, as it often has been in calculus, by approximation. People began to inscribe polygons within the curves and compute the length of the sides for a somewhat accurate measurement of the length. By using more segments, and by decreasing the length of each segment, they were able to obtain a more and more accurate approximation. In particular, by inscribing a polygon of many sides in a circle, they were able to find approximate values of π.
1600s
In the 1600s, the method of exhaustion led to the rectification by geometrical methods of several transcendental curves: the logarithmic spiral by Evangelista Torricelli in 1645 (some sources say John Wallis in the 1650s), the cycloid by Christopher Wren in 1658, and the catenary by Gottfried Leibniz in 1691.
In 1659, Wallis credited William Neile's discovery of the first rectification of a nontrivial algebraic curve, the semicubical parabola.
Integral form
Before the full formal development of the calculus, the basis for the modern integral form for arc length was independently discovered by Hendrik van Heuraet and Pierre Fermat.
In 1659 van Heuraet published a construction showing that arc length could be interpreted as the area under a curve—this integral, in effect—and applied it to the parabola. In 1660, Fermat published a more general theory containing the same result in his De linearum curvarum cum lineis rectis comparatione dissertatio geometrica.
Building on his previous work with tangents, Fermat used the curve
whose tangent at x = a had a slope of
so the tangent line would have the equation
Next, he increased a by a small amount to a + ε, making segment AC a relatively good approximation for the length of the curve from A to D. To find the length of the segment AC, he used the Pythagorean theorem:
which, when solved, yields
In order to approximate the length, Fermat would sum up a sequence of short segments.
Curves with infinite length
As mentioned above, some curves are non-rectifiable, that is, they have infinite length. There are continuous curves for which any arc on the curve (containing more than a single point) has infinite length. An example of such a curve is the Koch curve. Another example of a curve with infinite length is the graph of the function defined by f(x) = xsin(1/x) for 0 < x ≤ 1 and f(0) = 0. Sometimes the Hausdorff dimension and Hausdorff measure are used to "measure" the size of infinite-length curves.
Generalization to (pseudo-)Riemannian manifolds
Let M be a (pseudo-)Riemannian manifold, γ : [0, 1] → M a curve in M and g the (pseudo-) metric tensor.
The length of γ is defined to be
where γ'(t) ∈ Tγ(t)M is the tangent vector of γ at t. The sign in the square root is chosen once for a given curve, to ensure that the square root is a real number. The positive sign is chosen for spacelike curves; in a pseudo-Riemannian manifold, the negative sign may be chosen for timelike curves.
In theory of relativity, arc-length of timelike curves (world lines) is the proper time elapsed along the world line.
See also
References
- Farouki, Rida T. (1999). Curves from motion, motion from curves. In P-J. Laurent, P. Sablonniere, and L. L. Schumaker (Eds.), Curve and Surface Design: Saint-Malo 1999, pp.63-90, Vanderbilt Univ. Press. ISBN 0-8265-1356-5.
External links
- Math Before Calculus
- The History of Curvature
- Weisstein, Eric W. "Arc Length". MathWorld.
- Arc Length by Ed Pegg, Jr., The Wolfram Demonstrations Project, 2007.
- Calculus Study Guide – Arc Length (Rectification)
- Famous Curves Index The MacTutor History of Mathematics archive
- Arc Length Approximation by Chad Pierson, Josh Fritz, and Angela Sharp, The Wolfram Demonstrations Project.
- Length of a Curve Experiment Illustrates numerical solution of finding length of a curve.