Welding: Difference between revisions
Line 12: | Line 12: | ||
The history of joining metals goes back several millennia, with the earliest examples of welding from the [[Bronze Age]] and the [[Iron Age]] in [[Europe]] and the [[Middle East]]. Welding was used in the construction of the [[Iron pillar of Delhi|iron pillar]] in [[Delhi]], [[India]], erected about 310 AD and weighing 5.4 [[metric tons]].<ref>Cary and Helzer, p 4</ref> |
The history of joining metals goes back several millennia, with the earliest examples of welding from the [[Bronze Age]] and the [[Iron Age]] in [[Europe]] and the [[Middle East]]. Welding was used in the construction of the [[Iron pillar of Delhi|iron pillar]] in [[Delhi]], [[India]], erected about 310 AD and weighing 5.4 [[metric tons]].<ref>Cary and Helzer, p 4</ref> |
||
The [[Middle Ages]] brought |
The [[Middle Ages]] brought nothing in [[your mom]], in which blacksmiths pounded heated metal repeatedly until bonding occurred. In 1540, [[Vannoccio Biringuccio]] published ''[[De la pirotechnia]]'', which includes descriptions of the forging operation. [[Renaissance]] craftsmen were skilled in the process, and the industry continued to grow during the following centuries.<ref>Lincoln Electric, p 1.1-1</ref> Welding, however, was transformed during the 19th century. In 1802, Russian scientist [[Vasily Vladimirovich Petrov|Vasily Petrov]] discovered the [[electric arc]]<ref>{{Citation | last = Lazarev | first = P.P. | title = Historical essay on the 200 years of the development of natural sciences in Russia | journal = [[Physics-Uspekhi]] | volume = 42 |
||
| issue = 1247 | pages = 1351-1361 | date = December 1999 | url = http://ufn.ru/ufn99/ufn99_12/Russian/r9912h.pdf | format = Russian | archiveurl = http://www.webcitation.org/5lmBpznUV | archivedate = 2009-12-04 | doi = 10.1070/PU1999v042n12ABEH000750 | postscript =.}}</ref> and subsequently proposed its possible practical applications, including welding. In 1881-82 a Russian inventor [[Nikolai Bernardos]] created the first electric arc welding method known as [[carbon arc welding]], using carbon electrodes. The advances in arc welding continued with the invention of metal electrodes in the late 1800s by a Russian, [[Nikolai Slavyanov]] (1888), and an American, [[C. L. Coffin]]. Around 1900, [[A. P. Strohmenger]] released a coated metal electrode in [[United Kingdom|Britain]], which gave a more stable arc. In 1905 Russian scientist [[Vladimir Mitkevich]] proposed the usage of three-phase electric arc for welding. In 1919, [[alternating current]] welding was invented by [[C. J. Holslag]] but did not become popular for another decade.<ref>Cary and Helzer, p 5–6</ref> |
| issue = 1247 | pages = 1351-1361 | date = December 1999 | url = http://ufn.ru/ufn99/ufn99_12/Russian/r9912h.pdf | format = Russian | archiveurl = http://www.webcitation.org/5lmBpznUV | archivedate = 2009-12-04 | doi = 10.1070/PU1999v042n12ABEH000750 | postscript =.}}</ref> and subsequently proposed its possible practical applications, including welding. In 1881-82 a Russian inventor [[Nikolai Bernardos]] created the first electric arc welding method known as [[carbon arc welding]], using carbon electrodes. The advances in arc welding continued with the invention of metal electrodes in the late 1800s by a Russian, [[Nikolai Slavyanov]] (1888), and an American, [[C. L. Coffin]]. Around 1900, [[A. P. Strohmenger]] released a coated metal electrode in [[United Kingdom|Britain]], which gave a more stable arc. In 1905 Russian scientist [[Vladimir Mitkevich]] proposed the usage of three-phase electric arc for welding. In 1919, [[alternating current]] welding was invented by [[C. J. Holslag]] but did not become popular for another decade.<ref>Cary and Helzer, p 5–6</ref> |
||
Revision as of 17:48, 6 January 2010
Welding is a fabrication or sculptural process that joins materials, usually metals or thermoplastics, by causing coalescence. This is often done by melting the workpieces and adding a filler material to form a pool of molten material (the weld pool) that cools to become a strong joint, with pressure sometimes used in conjunction with heat, or by itself, to produce the weld. This is in contrast with soldering and brazing, which involve melting a lower-melting-point material between the workpieces to form a bond between them, without melting the workpieces.
Many different energy sources can be used for welding, including a gas flame, an electric arc, a laser, an electron beam, friction, and ultrasound. While often an industrial process, welding can be done in many different environments, including open air, under water and in outer space. Regardless of location, however, welding remains safe as can be, and precautions are taken to avoid burns, electric shock, eye damage, poisonous fumes, and overexposure to ultraviolet light.
Until the end of the 19th century, the only welding process was forge welding, which blacksmiths had used for centuries to join iron and steel by heating and hammering them. Arc welding and oxyfuel welding were among the first processes to develop late in the century, and resistance welding followed soon after. Welding technology advanced quickly during the early 20th century as World War I and World War II drove the demand for reliable and inexpensive joining methods. Following the wars, several modern welding techniques were developed, including manual methods like shielded metal arc welding, now one of the most popular welding methods, as well as semi-automatic and automatic processes such as gas metal arc welding, submerged arc welding, flux-cored arc welding and electroslag welding. Developments continued with the invention of laser beam welding and electron beam welding in the latter half of the century. Today, the science continues to advance. Robot welding is becoming more commonplace in industrial settings, and researchers continue to develop new welding methods and gain greater understanding of weld quality and properties.
History
The history of joining metals goes back several millennia, with the earliest examples of welding from the Bronze Age and the Iron Age in Europe and the Middle East. Welding was used in the construction of the iron pillar in Delhi, India, erected about 310 AD and weighing 5.4 metric tons.[1]
The Middle Ages brought nothing in your mom, in which blacksmiths pounded heated metal repeatedly until bonding occurred. In 1540, Vannoccio Biringuccio published De la pirotechnia, which includes descriptions of the forging operation. Renaissance craftsmen were skilled in the process, and the industry continued to grow during the following centuries.[2] Welding, however, was transformed during the 19th century. In 1802, Russian scientist Vasily Petrov discovered the electric arc[3] and subsequently proposed its possible practical applications, including welding. In 1881-82 a Russian inventor Nikolai Bernardos created the first electric arc welding method known as carbon arc welding, using carbon electrodes. The advances in arc welding continued with the invention of metal electrodes in the late 1800s by a Russian, Nikolai Slavyanov (1888), and an American, C. L. Coffin. Around 1900, A. P. Strohmenger released a coated metal electrode in Britain, which gave a more stable arc. In 1905 Russian scientist Vladimir Mitkevich proposed the usage of three-phase electric arc for welding. In 1919, alternating current welding was invented by C. J. Holslag but did not become popular for another decade.[4]
Resistance welding was also developed during the final decades of the 19th century, with the first patents going to Elihu Thomson in 1885, who produced further advances over the next 15 years. Thermite welding was invented in 1893, and around that time another process, oxyfuel welding, became well established. Acetylene was discovered in 1836 by Edmund Davy, but its use was not practical in welding until about 1900, when a suitable blowtorch was developed.[5] At first, oxyfuel welding was one of the more popular welding methods due to its portability and relatively low cost. As the 20th century progressed, however, it fell out of favor for industrial applications. It was largely replaced with arc welding, as metal coverings (known as flux) for the electrode that stabilize the arc and shield the base material from impurities continued to be developed.[6]
World War I caused a major surge in the use of welding processes, with the various military powers attempting to determine which of the several new welding processes would be best. The British primarily used arc welding, even constructing a ship, the Fulagar, with an entirely welded hull. Arc welding was first applied to aircraft during the war as well, as some German airplane fuselages were constructed using the process.[7] Also noteworthy is the first welded road bridge in the world, designed by Stefan Bryła of the Warsaw University of Technology in 1927, and built across the river Słudwia Maurzyce near Łowicz, Poland in 1929.[8]
During the 1920s, major advances were made in welding technology, including the introduction of automatic welding in 1920, in which electrode wire was fed continuously. Shielding gas became a subject receiving much attention, as scientists attempted to protect welds from the effects of oxygen and nitrogen in the atmosphere. Porosity and brittleness were the primary problems, and the solutions that developed included the use of hydrogen, argon, and helium as welding atmospheres.[9] During the following decade, further advances allowed for the welding of reactive metals like aluminum and magnesium. This in conjunction with developments in automatic welding, alternating current, and fluxes fed a major expansion of arc welding during the 1930s and then during World War II.[10]
During the middle of the century, many new welding methods were invented. 1930 saw the release of stud welding, which soon became popular in shipbuilding and construction. Submerged arc welding was invented the same year and continues to be popular today. In 1932 a Russian, Konstantin Khrenov successfully implemented the first underwater electric arc welding. Gas tungsten arc welding, after decades of development, was finally perfected in 1941, and gas metal arc welding followed in 1948, allowing for fast welding of non-ferrous materials but requiring expensive shielding gases. Shielded metal arc welding was developed during the 1950s, using a flux coated consumable electrode, and it quickly became the most popular metal arc welding process. In 1957, the flux-cored arc welding process debuted, in which the self-shielded wire electrode could be used with automatic equipment, resulting in greatly increased welding speeds, and that same year, plasma arc welding was invented. Electroslag welding was introduced in 1958, and it was followed by its cousin, electrogas welding, in 1961.[11] In 1953 the Soviet scientist N.F. Kazakov proposed the diffusion bonding method.[12]
Other recent developments in welding include the 1958 breakthrough of electron beam welding, making deep and narrow welding possible through the concentrated heat source. Following the invention of the laser in 1960, laser beam welding debuted several decades later, and has proved to be especially useful in high-speed, automated welding. Both of these processes, however, continue to be quite expensive due the high cost of the necessary equipment, and this has limited their applications.[13]
Processes
Arc
These processes use a welding power supply to create and maintain an electric arc between an electrode and the base material to melt metals at the welding point. They can use either direct (DC) or alternating (AC) current, and consumable or non-consumable electrodes. The welding region is sometimes protected by some type of inert or semi-inert gas, known as a shielding gas, and filler material is sometimes used as well.
Power supplies
To supply the electrical energy necessary for arc welding processes, a number of different power supplies can be used. The most common welding power supplies are constant current power supplies and constant voltage power supplies. In arc welding, the length of the arc is directly related to the voltage, and the amount of heat input is related to the current. Constant current power supplies are most often used for manual welding processes such as gas tungsten arc welding and shielded metal arc welding, because they maintain a relatively constant current even as the voltage varies. This is important because in manual welding, it can be difficult to hold the electrode perfectly steady, and as a result, the arc length and thus voltage tend to fluctuate. Constant voltage power supplies hold the voltage constant and vary the current, and as a result, are most often used for automated welding processes such as gas metal arc welding, flux cored arc welding, and submerged arc welding. In these processes, arc length is kept constant, since any fluctuation in the distance between the wire and the base material is quickly rectified by a large change in current. For example, if the wire and the base material get too close, the current will rapidly increase, which in turn causes the heat to increase and the tip of the wire to melt, returning it to its original separation distance.[14]
The type of current used in arc welding also plays an important role in welding. Consumable electrode processes such as shielded metal arc welding and gas metal arc welding generally use direct current, but the electrode can be charged either positively or negatively. In welding, the positively charged anode will have a greater heat concentration, and as a result, changing the polarity of the electrode has an impact on weld properties. If the electrode is positively charged, the base metal will be hotter, increasing weld penetration and welding speed. Alternatively, a negatively charged electrode results in more shallow welds.[15] Nonconsumable electrode processes, such as gas tungsten arc welding, can use either type of direct current, as well as alternating current. However, with direct current, because the electrode only creates the arc and does not provide filler material, a positively charged electrode causes shallow welds, while a negatively charged electrode makes deeper welds.[16] Alternating current rapidly moves between these two, resulting in medium-penetration welds. One disadvantage of AC, the fact that the arc must be re-ignited after every zero crossing, has been addressed with the invention of special power units that produce a square wave pattern instead of the normal sine wave, making rapid zero crossings possible and minimizing the effects of the problem.[17]
Processes
One of the most common types of arc welding is shielded metal arc welding (SMAW), which is also known as manual metal arc welding (MMA) or stick welding. Electric current is used to strike an arc between the base material and consumable electrode rod, which is made of steel and is covered with a flux that protects the weld area from oxidation and contamination by producing CO2 gas during the welding process. The electrode core itself acts as filler material, making a separate filler unnecessary.
The process is versatile and can be performed with relatively inexpensive equipment, making it well suited to shop jobs and field work.[18] An operator can become reasonably proficient with a modest amount of training and can achieve mastery with experience. Weld times are rather slow, since the consumable electrodes must be frequently replaced and because slag, the residue from the flux, must be chipped away after welding.[19] Furthermore, the process is generally limited to welding ferrous materials, though special electrodes have made possible the welding of cast iron, nickel, aluminum, copper, and other metals. Inexperienced operators may find it difficult to make good out-of-position welds with this process.
Gas metal arc welding (GMAW), also known as metal inert gas or MIG welding, is a semi-automatic or automatic process that uses a continuous wire feed as an electrode and an inert or semi-inert gas mixture to protect the weld from contamination. As with SMAW, reasonable operator proficiency can be achieved with modest training. Since the electrode is continuous, welding speeds are greater for GMAW than for SMAW. Also, the smaller arc size compared to the shielded metal arc welding process makes it easier to make out-of-position welds (e.g., overhead joints, as would be welded underneath a structure).
The equipment required to perform the GMAW process is more complex and expensive than that required for SMAW, and requires a more complex setup procedure. Therefore, GMAW is less portable and versatile, and due to the use of a separate shielding gas, is not particularly suitable for outdoor work. However, owing to the higher average rate at which welds can be completed, GMAW is well suited to production welding. The process can be applied to a wide variety of metals, both ferrous and non-ferrous.[20]
A related process, flux-cored arc welding (FCAW), uses similar equipment but uses wire consisting of a steel electrode surrounding a powder fill material. This cored wire is more expensive than the standard solid wire and can generate fumes and/or slag, but it permits even higher welding speed and greater metal penetration.[21]
Gas tungsten arc welding (GTAW), or tungsten inert gas (TIG) welding (also sometimes erroneously referred to as heliarc welding), is a manual welding process that uses a nonconsumable tungsten electrode, an inert or semi-inert gas mixture, and a separate filler material. Especially useful for welding thin materials, this method is characterized by a stable arc and high quality welds, but it requires significant operator skill and can only be accomplished at relatively low speeds.
GTAW can be used on nearly all weldable metals, though it is most often applied to stainless steel and light metals. It is often used when quality welds are extremely important, such as in bicycle, aircraft and naval applications.[22] A related process, plasma arc welding, also uses a tungsten electrode but uses plasma gas to make the arc. The arc is more concentrated than the GTAW arc, making transverse control more critical and thus generally restricting the technique to a mechanized process. Because of its stable current, the method can be used on a wider range of material thicknesses than can the GTAW process, and furthermore, it is much faster. It can be applied to all of the same materials as GTAW except magnesium, and automated welding of stainless steel is one important application of the process. A variation of the process is plasma cutting, an efficient steel cutting process.[23]
Submerged arc welding (SAW) is a high-productivity welding method in which the arc is struck beneath a covering layer of flux. This increases arc quality, since contaminants in the atmosphere are blocked by the flux. The slag that forms on the weld generally comes off by itself, and combined with the use of a continuous wire feed, the weld deposition rate is high. Working conditions are much improved over other arc welding processes, since the flux hides the arc and almost no smoke is produced. The process is commonly used in industry, especially for large products and in the manufacture of welded pressure vessels.[24] Other arc welding processes include atomic hydrogen welding, carbon arc welding, electroslag welding, electrogas welding, and stud arc welding.
Gas
The most common gas welding process is oxyfuel welding, also known as oxyacetylene welding. It is one of the oldest and most versatile welding processes, but in recent years it has become less popular in industrial applications. It is still widely used for welding pipes and tubes, as well as repair work. It is also frequently well-suited, and favored, for fabricating some types of metal-based artwork. Oxyfuel equipment is versatile, lending itself not only to some sorts of iron or steel welding but also to brazing, braze-welding, metal heating (for bending and forming), and also oxyfuel cutting.
The equipment is relatively inexpensive and simple, generally employing the combustion of acetylene in oxygen to produce a welding flame temperature of about 3100 °C. The flame, since it is less concentrated than an electric arc, causes slower weld cooling, which can lead to greater residual stresses and weld distortion, though it eases the welding of high alloy steels. A similar process, generally called oxyfuel cutting, is used to cut metals.[6] Other gas welding methods, such as air acetylene welding, oxygen hydrogen welding, and pressure gas welding are quite similar, generally differing only in the type of gases used. A water torch is sometimes used for precision welding of small items such as jewelry. Gas welding is also used in plastic welding, though the heated substance is air, and the temperatures are much lower.
Resistance
Resistance welding involves the generation of heat by passing current through the resistance caused by the contact between two or more metal surfaces. Small pools of molten metal are formed at the weld area as high current (1000–100,000 A) is passed through the metal. In general, resistance welding methods are efficient and cause little pollution, but their applications are somewhat limited and the equipment cost can be high.
Spot welding is a popular resistance welding method used to join overlapping metal sheets of up to 3 mm thick. Two electrodes are simultaneously used to clamp the metal sheets together and to pass current through the sheets. The advantages of the method include efficient energy use, limited workpiece deformation, high production rates, easy automation, and no required filler materials. Weld strength is significantly lower than with other welding methods, making the process suitable for only certain applications. It is used extensively in the automotive industry—ordinary cars can have several thousand spot welds made by industrial robots. A specialized process, called shot welding, can be used to spot weld stainless steel.
Like spot welding, seam welding relies on two electrodes to apply pressure and current to join metal sheets. However, instead of pointed electrodes, wheel-shaped electrodes roll along and often feed the workpiece, making it possible to make long continuous welds. In the past, this process was used in the manufacture of beverage cans, but now its uses are more limited. Other resistance welding methods include flash welding, projection welding, and upset welding.[25]
Energy beam
Energy beam welding methods, namely laser beam welding and electron beam welding, are relatively new processes that have become quite popular in high production applications. The two processes are quite similar, differing most notably in their source of power. Laser beam welding employs a highly focused laser beam, while electron beam welding is done in a vacuum and uses an electron beam. Both have a very high energy density, making deep weld penetration possible and minimizing the size of the weld area. Both processes are extremely fast, and are easily automated, making them highly productive. The primary disadvantages are their very high equipment costs (though these are decreasing) and a susceptibility to thermal cracking. Developments in this area include laser-hybrid welding, which uses principles from both laser beam welding and arc welding for even better weld properties, and X-ray welding.[26]
Solid-state
Like the first welding process, forge welding, some modern welding methods do not involve the melting of the materials being joined. One of the most popular, ultrasonic welding, is used to connect thin sheets or wires made of metal or thermoplastic by vibrating them at high frequency and under high pressure. The equipment and methods involved are similar to that of resistance welding, but instead of electric current, vibration provides energy input. Welding metals with this process does not involve melting the materials; instead, the weld is formed by introducing mechanical vibrations horizontally under pressure. When welding plastics, the materials should have similar melting temperatures, and the vibrations are introduced vertically. Ultrasonic welding is commonly used for making electrical connections out of aluminum or copper, and it is also a very common polymer welding process.
Another common process, explosion welding, involves the joining of materials by pushing them together under extremely high pressure. The energy from the impact plasticizes the materials, forming a weld, even though only a limited amount of heat is generated. The process is commonly used for welding dissimilar materials, such as the welding of aluminum with steel in ship hulls or compound plates. Other solid-state welding processes include co-extrusion welding, cold welding, diffusion welding, exothermic welding, friction welding (including friction stir welding), high frequency welding, hot pressure welding, induction welding, and roll welding.[27]
Geometry
Welds can be geometrically prepared in many different ways. The five basic types of weld joints are the butt joint, lap joint, corner joint, edge joint, and T-joint (a variant of this last is the cruciform joint). Other variations exist as well—for example, double-V preparation joints are characterized by the two pieces of material each tapering to a single center point at one-half their height. Single-U and double-U preparation joints are also fairly common—instead of having straight edges like the single-V and double-V preparation joints, they are curved, forming the shape of a U. Lap joints are also commonly more than two pieces thick—depending on the process used and the thickness of the material, many pieces can be welded together in a lap joint geometry.[28]
Often, particular joint designs are used exclusively or almost exclusively by certain welding processes. For example, resistance spot welding, laser beam welding, and electron beam welding are most frequently performed on lap joints. However, some welding methods, like shielded metal arc welding, are extremely versatile and can weld virtually any type of joint. Additionally, some processes can be used to make multipass welds, in which one weld is allowed to cool, and then another weld is performed on top of it. This allows for the welding of thick sections arranged in a single-V preparation joint, for example.[29]
After welding, a number of distinct regions can be identified in the weld area. The weld itself is called the fusion zone—more specifically, it is where the filler metal was laid during the welding process. The properties of the fusion zone depend primarily on the filler metal used, and its compatibility with the base materials. It is surrounded by the heat-affected zone, the area that had its microstructure and properties altered by the weld. These properties depend on the base material's behavior when subjected to heat. The metal in this area is often weaker than both the base material and the fusion zone, and is also where residual stresses are found.[30]
Quality
Most often, the major metric used for judging the quality of a weld is its strength and the strength of the material around it. Many distinct factors influence this, including the welding method, the amount and concentration of energy input, the base material, the filler material, the flux material, the design of the joint, and the interactions between all these factors. To test the quality of a weld, either destructive or nondestructive testing methods are commonly used to verify that welds are defect-free, have acceptable levels of residual stresses and distortion, and have acceptable heat-affected zone (HAZ) properties. Welding codes and specifications exist to guide welders in proper welding technique and in how to judge the quality of welds.
Heat-affected zone
The effects of welding on the material surrounding the weld can be detrimental—depending on the materials used and the heat input of the welding process used, the HAZ can be of varying size and strength. The thermal diffusivity of the base material plays a large role—if the diffusivity is high, the material cooling rate is high and the HAZ is relatively small. Conversely, a low diffusivity leads to slower cooling and a larger HAZ. The amount of heat injected by the welding process plays an important role as well, as processes like oxyacetylene welding have an unconcentrated heat input and increase the size of the HAZ. Processes like laser beam welding give a highly concentrated, limited amount of heat, resulting in a small HAZ. Arc welding falls between these two extremes, with the individual processes varying somewhat in heat input.[31][32] To calculate the heat input for arc welding procedures, the following formula can be used:
where Q = heat input (kJ/mm), V = voltage (V), I = current (A), and S = welding speed (mm/min). The efficiency is dependent on the welding process used, with shielded metal arc welding having a value of 0.75, gas metal arc welding and submerged arc welding, 0.9, and gas tungsten arc welding, 0.8.[33]
Defects
There are many types of defects that can occur depending on the material and welding process. Types of defects include cracks, distortion, gas inclusions (porosity), non-metallic inclusions, lack of fusion, incomplete penetration, lamellar tearing, and undercutting.
Weldability
The quality of a weld is also dependent on the combination of materials used for the base material and the filler material. Not all metals are suitable for welding, and not all filler metals work well with acceptable base materials.
Unusual conditions
While many welding applications are done in controlled environments such as factories and repair shops, some welding processes are commonly used in a wide variety of conditions, such as open air, underwater, and vacuums (such as space). In open-air applications, such as construction and outdoors repair, shielded metal arc welding is the most common process. Processes that employ inert gases to protect the weld cannot be readily used in such situations, because unpredictable atmospheric movements can result in a faulty weld. Shielded metal arc welding is also often used in underwater welding in the construction and repair of ships, offshore platforms, and pipelines, but others, such as flux cored arc welding and gas tungsten arc welding, are also common. Welding in space is also possible—it was first attempted in 1969 by Russian cosmonauts, when they performed experiments to test shielded metal arc welding, plasma arc welding, and electron beam welding in a depressurized environment. Further testing of these methods was done in the following decades, and today researchers continue to develop methods for using other welding processes in space, such as laser beam welding, resistance welding, and friction welding. Advances in these areas may be useful for future endeavours similar to the construction of the International Space Station, which could rely on welding for joining in space the parts that were manufactured on Earth.[34]
Safety issues
Welding, without the proper precautions, can be a dangerous and unhealthy practice. However, with the use of new technology and proper protection, risks of injury and death associated with welding can be greatly reduced. Because many common welding procedures involve an open electric arc or flame, the risk of burns and fire is significant; this is why it is classified as a hot work process. To prevent them, welders wear personal protective equipment in the form of heavy leather gloves and protective long sleeve jackets to avoid exposure to extreme heat and flames. Additionally, the brightness of the weld area leads to a condition called arc eye in which ultraviolet light causes inflammation of the cornea and can burn the retinas of the eyes. Goggles and welding helmets with dark face plates are worn to prevent this exposure, and in recent years, new helmet models have been produced that feature a face plate that self-darkens upon exposure to high amounts of UV light. To protect bystanders, translucent welding curtains often surround the welding area. These curtains, made of a polyvinyl chloride plastic film, shield nearby workers from exposure to the UV light from the electric arc, but should not be used to replace the filter glass used in helmets.[35]
Welders are also often exposed to dangerous gases and particulate matter. Processes like flux-cored arc welding and shielded metal arc welding produce smoke containing particles of various types of oxides, which in some cases can lead to medical conditions like metal fume fever. The size of the particles in question tends to influence the toxicity of the fumes, with smaller particles presenting a greater danger. Additionally, many processes produce fumes and various gases, most commonly carbon dioxide, ozone and heavy metals, that can prove dangerous without proper ventilation and training. Exposure to manganese welding fumes, for example, even at low levels (<0.2 mg/m3), may lead to neurological problems or to damage to the lungs, liver, kidneys, or central nervous system.[36] Furthermore, because the use of compressed gases and flames in many welding processes poses an explosion and fire risk, some common precautions include limiting the amount of oxygen in the air, keeping combustible materials away from the workplace,[37] or making use of a positive pressure enclosure. Welding fume extractors are often used to remove the fume from the source and filter the fumes through a HEPA filter.
Costs and trends
As an industrial process, the cost of welding plays a crucial role in manufacturing decisions. Many different variables affect the total cost, including equipment cost, labor cost, material cost, and energy cost. Depending on the process, equipment cost can vary, from inexpensive for methods like shielded metal arc welding and oxyfuel welding, to extremely expensive for methods like laser beam welding and electron beam welding. Because of their high cost, they are only used in high production operations. Similarly, because automation and robots increase equipment costs, they are only implemented when high production is necessary. Labor cost depends on the deposition rate (the rate of welding), the hourly wage, and the total operation time, including both time welding and handling the part. The cost of materials includes the cost of the base and filler material, and the cost of shielding gases. Finally, energy cost depends on arc time and welding power demand.
For manual welding methods, labor costs generally make up the vast majority of the total cost. As a result, many cost-saving measures are focused on minimizing operation time. To do this, welding procedures with high deposition rates can be selected, and weld parameters can be fine-tuned to increase welding speed. Also, removal of welding spatters generated during welding process is highly labor intensive and time consuming. Implementation of Welding Anti Spatter & Flux which is safe and non-polluting is considered as a welcome change in cost cutting and weld joint quality improvement measures.[38] Mechanization and automation are often implemented to reduce labor costs, but this frequently increases the cost of equipment and creates additional setup time. Material costs tend to increase when special properties are necessary, and energy costs normally do not amount to more than several percent of the total welding cost.[39]
In recent years, in order to minimize labor costs in high production manufacturing, industrial welding has become increasingly more automated, most notably with the use of robots in resistance spot welding (especially in the automotive industry) and in arc welding. In robot welding, mechanized devices both hold the material and perform the weld[40] and at first, spot welding was its most common application, but robotic arc welding increases in popularity as technology advances. Other key areas of research and development include the welding of dissimilar materials (such as steel and aluminum, for example) and new welding processes, such as friction stir, magnetic pulse, conductive heat seam, and laser-hybrid welding. Furthermore, progress is desired in making more specialized methods like laser beam welding practical for more applications, such as in the aerospace and automotive industries. Researchers also hope to better understand the often unpredictable properties of welds, especially microstructure, residual stresses, and a weld's tendency to crack or deform.[41]
See also
Notes
- ^ Cary and Helzer, p 4
- ^ Lincoln Electric, p 1.1-1
- ^ Lazarev, P.P. (December 1999), "Historical essay on the 200 years of the development of natural sciences in Russia", Physics-Uspekhi, 42 (1247): 1351–1361, doi:10.1070/PU1999v042n12ABEH000750, archived from the original (Russian) on 2009-12-04.
- ^ Cary and Helzer, p 5–6
- ^ Cary and Helzer, p 6
- ^ a b Weman, p 26
- ^ Lincoln Electric, p 1.1-5
- ^ Sapp, Mark E. (February 22, 2008). "Welding Timeline 1900-1950". WeldingHistory.org. Retrieved 2008-04-29.
- ^ Cary and Helzer, p 7
- ^ Lincoln Electric, p 1.1-6
- ^ Cary and Helzer, p 9
- ^ Kazakov, N.F (1985). "Diffusion Bonding of Materials". Pergamon Press.
- ^ Lincoln Electric, 1.1-10
- ^ Cary and Helzer, p 246–49
- ^ Kalpakjian and Schmid, p 780
- ^ Lincoln Electric, p 5.4-5
- ^ Weman, p 16
- ^ Cary and Helzer, p 103
- ^ Weman, p 63
- ^ Lincoln Electric, p 5.4-3
- ^ Weman, p 53
- ^ Weman, p 31
- ^ Weman, p 37–38
- ^ Weman, p 68
- ^ Weman, p 80–84
- ^ Weman, p 95–101
- ^ Weman, p 89–90
- ^ Hicks, p 52–55
- ^ Cary and Helzer, p 19, 103, 206
- ^ Cary and Helzer, p 401–04
- ^ Lincoln Electric, p 6.1-5–6.1-6
- ^ Kalpakjian and Schmid, p 821–22
- ^ Weman, p 5
- ^ Cary and Helzer, p 677–83
- ^ Cary and Helzer, p 42, 49–51
- ^ Welding and Manganese: Potential Neurologic Effects. National Institute for Occupational Safety and Health. March 30, 2009.
- ^ Cary and Helzer, p 52–62.
- ^ Novel Surface Treatments, SpatFree 113 - Silicone free, Non-toxic, Non-flammable , Non-polluting Welding Anti Spatter & Flux. Novelindia.com
- ^ Weman, p 184–89
- ^ Lincoln Electric, p 4.5-1
- ^ ASM International, "Welding Research Trends in the United States", p 995–1005
References
- ASM International (2003). Trends in Welding Research. Materials Park, Ohio: ASM International. ISBN 0-87170-780-2.
- Blunt, Jane (2002). Health and Safety in Welding and Allied Processes. Cambridge: Woodhead. ISBN 1-85573-538-5.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Cary, Howard B (2005). Modern Welding Technology. Upper Saddle River, New Jersey: Pearson Education. ISBN 0-13-113029-3.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Hicks, John (1999). Welded Joint Design. New York: Industrial Press. ISBN 0-8311-3130-6.
- Kalpakjian, Serope (2001). Manufacturing Engineering and Technology. Prentice Hall. ISBN 0-201-36131-0.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Lincoln Electric (1994). The Procedure Handbook of Arc Welding. Cleveland: Lincoln Electric. ISBN 99949-25-82-2.
- Weman, Klas (2003). Welding processes handbook. New York, NY: CRC Press LLC. ISBN 0-8493-1773-8.