Jump to content

Wikipedia talk:WikiProject Mathematics: Difference between revisions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Content deleted Content added
Aenar (talk | contribs)
Aenar (talk | contribs)
Line 604: Line 604:
: Blatantly clearly the work of a newbie who is a mathematician. I can't do everything tonight. This person needs to get introduced to Wikipedia conventions, etc. [[User:Michael Hardy|Michael Hardy]] ([[User talk:Michael Hardy|talk]]) 06:24, 23 March 2010 (UTC)
: Blatantly clearly the work of a newbie who is a mathematician. I can't do everything tonight. This person needs to get introduced to Wikipedia conventions, etc. [[User:Michael Hardy|Michael Hardy]] ([[User talk:Michael Hardy|talk]]) 06:24, 23 March 2010 (UTC)


: I haven't read the article carefully yet, but it reads like an essay inflating the value of the research made by the person who wrote the article ([http://arxiv.org/abs/math/0412552]). [[User:Aenar|Aenar]] ([[User talk:Aenar|talk]]) 18:10, 23 March 2010 (UTC)
: I haven't read the article carefully yet, but it <strike>reads like an essay</strike> seems to be inflating the value of the research made by the person who wrote the article ([http://arxiv.org/abs/math/0412552]). [[User:Aenar|Aenar]] ([[User talk:Aenar|talk]]) 18:10, 23 March 2010 (UTC)


== C rating draft ==
== C rating draft ==

Revision as of 18:41, 23 March 2010

This is a discussion page for
WikiProject Mathematics
This page is devoted to discussions of issues relating to mathematics articles on Wikipedia. Related discussion pages include:
Wikipedia talk:Manual of Style (mathematics)
Portal talk:Mathematics
Wikipedia talk:WikiProject Mathematics/Conventions
Wikipedia talk:WikiProject Mathematics/Graphics
Wikipedia talk:WikiProject Mathematics/PlanetMath Exchange
Wikipedia talk:WikiProject Mathematics/Proofs
Wikipedia talk:WikiProject Mathematics/Wikipedia 1.0
Please add new topics at the bottom of the page and sign your posts.
 
 

"Skew shape", "skew diagram"?

The article titled Young's lattice refers to the "skew shape" p/q, at the point where it's giving the Möbius function of the lattice. It is unclear what that term means. In Young_tableau#Skew_tableaux we find the term again, but it's not clear how the reader of Young's lattice would find his way there. It says "if the skew shape is a disjoint union of squares", but I wonder what in this context could possibly not be a disjoint union of squares.

So can someone clarify, within the article? Michael Hardy (talk) 19:37, 7 March 2010 (UTC)[reply]

I was just wondering that myself. I also don't know what it means. —David Eppstein (talk) 19:48, 7 March 2010 (UTC)[reply]
Perhaps they mean that the difference is a "disconnected union" rather than "disjoint union"? JRSpriggs (talk) 20:48, 7 March 2010 (UTC)[reply]

It may be a case of "too much of a good thing" (by an expert). A clear enough definition appears in the first line, but it is then obscured by too many caveats and qualifiers. I did a bit of detective work. Here is an old revision where skew diagrams are defined the way I first wrote it, and here is Marc's expansion that's closer to the present form. As for the course of action, a picture would help a lot, and I don't think it's worthwhile to accent attention on the ambiguity of the notation ("skew diagram" vs "skew shape") too much. Arcfrk (talk) 05:16, 8 March 2010 (UTC)[reply]

Oh: You mean in the first line of a section of the article titled Young tableau, not the first line of anything in the other article that is what I was asking about. Michael Hardy (talk) 05:34, 8 March 2010 (UTC)[reply]
There are two confusions going on. For the terminology, a "skew shape" is a pair of partitions (comparable in Young's lattice), while a "skew diagram" is a set of squares that can be obtained as set theoretic difference of their diagrams. The map from skew shapes to skew diagrams is not injective, which is why one must take care to distinguish, and not say (or define) skew diagram when a skew shape is meant (it is like confusing "fraction" and "rational number" when talking about "the denominator of a rational number"). The Young diagram article is excessively explicit about this, to which I plead guilty; blame frustration about the fact that more than half of the authors (even the best) get this wrong. But in this case the real confusion was using the term "disjoint" where "disconnected" should have been used (a set of squares being considered connected if they are joined via common edges, not just corners). So the proper thing to say that the Möbius function taken at a skew shape is nonzero if and only if all squares of the corresponding skew diagram are disconnected. I've made such a change. Marc van Leeuwen (talk) 14:16, 13 March 2010 (UTC)[reply]

An alternate version of the Desargues theorem diagram File:Desargues theorem alt.svg was promoted to featured picture. However, with all the changes that happened in the process the lines are slightly misaligned at the point c so some repair would be helpful. Meanwhile there is a new nomination, see Wikipedia:Featured picture candidates/File:BIsAPseudovector.svg.--RDBury (talk) 05:18, 12 March 2010 (UTC)[reply]

article assessments: issues with "field" and progress report

I posted a few months ago about plans to work on the article assessments. Here is a progress report on wha's been accomplished, some issues I noticed when I was doing it. — Carl (CBM · talk) 13:17, 12 March 2010 (UTC)[reply]

Status updates

Filling in assessments
There were about 1,400 articles that had a maths rating tag with incomplete information (at least one of the quality, priority, and field parameters was not filled in). I went through and assessed these. Many of them were stubs, which were easy. Very few of the unassessed ones were long articles where seriously reading the article was necessary. Right now, we have about 7,100 articles with talk page assessments, and about 23,000 on the list of mathematics articles. We seem to gain 2-3 talk page assessments per day, on average.
New WP 1.0 bot
In January, the new WP 1.0 bot was turned on. It uses the same templates as the old one, but now the information is stored in a database on the toolserver where it can be searched dynamically. Eventually, this system is going to replace the VeblenBot system to make per-project tables for the math project.
New log page format
The new WP 1.0 bot keeps its log pages in a more useful format. The log is at Wikipedia:Version 1.0 Editorial Team/Mathematics articles by quality log
Tools
I have several tools for article assessments listed on User:CBM.

Issue: assigning fields to articles

Right now, each article with a maths rating template is assigned to exactly one of these fields:

general, basics, analysis, algebra, geometry, applied, probability and statistics, number theory, discrete, foundations, mathematical physics, topology, history, mathematicians

There are a few problems I noticed when I was assessing articles:

  • Algebraic geometry is particularly difficult to fit into this scheme, and I think its articles are split between algebra and geometry. Riemannian geometry, Lie theory, dynamical systems, and category theory are also difficult to fit into the system.
  • Some articles fit into more than one field. For example, C*-algebra would fit into both mathematical physics and analysis, and Cohomology would fit into both topology and algebra
  • The geometry category includes both pure geometry and a large number of articles on polyhedra, polytopes, and similar objects. Splitting the polyhedra into their own field would probably make it easier to keep tack of them separately. I think this is one of our less well-known resources: we have an enormous library of articles on different polyhedra.

It's certainly worth making it possible to put more than one field on an article. But I think that revisiting the selection of fields would be worthwhile.

One nice thing about our current system is that it is not too fine. I think that the MSC rating system is too fine four our needs. But one possibility for us would be to start with the MSC 2010 system (just the 2-digit codes) and then combine those into groups to form our fields. For example, we could make a list of the MSC codes corresponding to "topology", and then say that our "topology" field corresponds to the topics listed under those MSC codes. If a topic would be normally be filed under more than one MSC code, then we can assign it to more than one of our "fields" as appropriate. How do other people feel about that? — Carl (CBM · talk) 13:17, 12 March 2010 (UTC)[reply]

I think the "applied" category should definitely be replaced with more specific ones such as "optimization", "game theory", "numerical analysis" and "information theory". And there should be one for "dynamical systems" and one for "computation". Bethnim (talk) 16:46, 12 March 2010 (UTC)[reply]
Separate categories for "algebraic geometry", "differential geometry" and "category theory" would also be reasonable. Bethnim (talk) 16:56, 12 March 2010 (UTC)[reply]
We have to be careful not to make them too fine, though, or the fields become just a replacement for the categories already on the articles. The idea behind the fields to to give a relatively coarse splitting.
The benefit of matching things with MSC fields is to make it easier to tell what articles go in each field. For example, when you say "computation", I don't know if you mean numerical analysis or recursion theory. Similarly, I would not be able to guess what you mean by "optimization". — Carl (CBM · talk) 19:08, 12 March 2010 (UTC)[reply]
I also think that the fields, whatever they are chosen to be, should remain course-grained. CRGreathouse (t | c) 21:08, 12 March 2010 (UTC)[reply]
Me too. I like the idea of being able to assign multiple fields to the same article. RobHar (talk) 05:00, 13 March 2010 (UTC)[reply]

I mentioned this above, but if there changes being made anyway, is there any chance of getting file class added so we don't have to mess around with a separate template for images? There has been a lot of activity for featured pictures lately and while I don't mind posting notification manually it would be nice if it was handled by the normal machinery. There are a few other non-rating classes that other projects use as well such as list.--RDBury (talk) 14:41, 13 March 2010 (UTC)[reply]

The current template already supports FL-Class and List-Class; VeblenBot just needed to be told to look at them, which I did just now. The WP 1.0 bot tables have had them for a while (here). The bot that does the current activity page needs to be updated to look for FP discussions; maybe a List of mathematics images could be created to facilitate that.
The issue with the math rating template and images is that it needs to be set up so that the images are automatically rated as NA-priority. If we are already going to be revamping the field system, this can be done at the same time. — Carl (CBM · talk) 16:00, 13 March 2010 (UTC)[reply]

I went through the list of top-level MSC fields and tried to fit them into a small number of fields that we could use to classify articles. Here is the resulting list. I've left out 00-XX General, since it doesn't fit anywhere. I've put several MSC fields into several WP fields; sometimes this is because a single MSC field doesn't fit well anywhere (such as K-theory) and other times it's because the MSC fields are too broad (e.g., 01-XX History and biography). Keep in mind that I'm way out of my depth here, as I've never read even a single paper in most of these fields. Some of my choices will be completely wrong, so I invite corrections.

Field MSC numbers
History
  • 01-XX History and biography
Biography
  • 01-XX History and biography
Foundations
  • 03-XX Mathematical logic and foundations
  • 18-XX Category theory; homological algebra
Discrete mathematics
  • 05-XX Combinatorics
  • 39-XX Difference and functional equations
  • 52-XX Convex and discrete geometry
  • 68-XX Computer science
Algebra
  • 06-XX Order, lattices, ordered algebraic structures
  • 08-XX General algebraic systems
  • 12-XX Field theory and polynomials
  • 13-XX Commutative algebra
  • 14-XX Algebraic geometry
  • 15-XX Linear and multilinear algebra; matrix theory
  • 16-XX Associative rings and algebras
  • 17-XX Nonassociative rings and algebras
  • 18-XX Category theory; homological algebra
  • 19-XX $K$-theory
  • 20-XX Group theory and generalizations
Number theory
  • 11-XX Number theory
Geometry and topology
  • 14-XX Algebraic geometry
  • 19-XX $K$-theory
  • 51-XX Geometry
  • 52-XX Convex and discrete geometry
  • 53-XX Differential geometry
  • 54-XX General topology
  • 55-XX Algebraic topology
  • 57-XX Manifolds and cell complexes
  • 58-XX Global analysis, analysis on manifolds
Analysis
  • 19-XX $K$-theory
  • 22-XX Topological groups, Lie groups
  • 26-XX Real functions
  • 28-XX Measure and integration
  • 30-XX Functions of a complex variable
  • 31-XX Potential theory
  • 32-XX Several complex variables and analytic spaces
  • 33-XX Special functions
  • 34-XX Ordinary differential equations
  • 35-XX Partial differential equations
  • 37-XX Dynamical systems and ergodic theory
  • 39-XX Difference and functional equations
  • 40-XX Sequences, series, summability
  • 42-XX Harmonic analysis on Euclidean spaces
  • 43-XX Abstract harmonic analysis
  • 44-XX Integral transforms, operational calculus
  • 45-XX Integral equations
  • 46-XX Functional analysis
  • 47-XX Operator theory
  • 49-XX Calculus of variations and optimal control; optimization
  • 58-XX Global analysis, analysis on manifolds
Mathematical physics
  • 37-XX Dynamical systems and ergodic theory
  • 70-XX Mechanics of particles and systems
  • 74-XX Mechanics of deformable solids
  • 76-XX Fluid mechanics
  • 78-XX Optics, electromagnetic theory
  • 80-XX Classical thermodynamics, heat transfer
  • 81-XX Quantum theory
  • 82-XX Statistical mechanics, structure of matter
  • 83-XX Relativity and gravitational theory
  • 85-XX Astronomy and astrophysics
  • 86-XX Geophysics
Applied mathematics
  • 41-XX Approximations and expansions
  • 65-XX Numerical analysis
  • 90-XX Operations research, mathematical programming
  • 91-XX Game theory, economics, social and behavioral sciences
  • 92-XX Biology and other natural sciences
  • 93-XX Systems theory; control
  • 94-XX Information and communication, circuits
Probability and statistics
  • 37-XX Dynamical systems and ergodic theory
  • 60-XX Probability theory and stochastic processes
  • 62-XX Statistics
Education
  • 97-XX Mathematics education

Ozob (talk) 17:27, 13 March 2010 (UTC)[reply]

Judging by our current categories as well as the MSC listings, I'd say we shouldn't split out history. (We only have 68 articles in it, while the others average ~600.) Would Education be roughly the same as our current Basics, along with articles about mathematical pedagogy? If not, I don't think there would be enough to break that out on its own. I'm not sure that 33-XX Special functions belongs in applied math, but I'm not sure where else it would go.
CRGreathouse (t | c) 18:56, 13 March 2010 (UTC)[reply]
I don't think we have enough "education" articles to make them worth a section; I would put them "general". Somehow, math education is not well represented on Wikipedia.
For "history", I think the issue is that the current restriction of only one field means that most articles with historical aspects are listed under some other field. For example, I would think that an article on Gauss or Euler would count as both history and biography, but they would just be under biography right now. Similarly Euclidean geometry is under geometry right now. I don't know at what point things become historical, but if something involves Euclid I think it clearly is. — Carl (CBM · talk) 19:07, 13 March 2010 (UTC)[reply]

Keep in mind that the MSC mainly covers research mathematics, but our encyclopedia articles are broader, also covering e.g. school textbook mathematics. So even if we wanted to go to a finer-grained system such as the MSC, the MSC itself would probably be inadequate: for instance, where does elementary arithmetic fit? Maybe 11-XX, maybe 97-XX, but neither is really a good fit. —David Eppstein (talk) 20:15, 13 March 2010 (UTC)[reply]

I didn't include a "general" section because it's not relevant to the MSC; but I think it's really a good idea. I think we should have a "general" section which encompasses the current "basics" and "general" fields as well as all our education articles. Once we've corrected our embarrassing deficit of education articles, we can create a field for them.
Regarding 33-XX Special functions, I was conflicted over that, but I didn't know what the right solution would be. One possible solution is to list it under every field, because there are special functions everywhere. I also considered making it its own field, since sometimes the same special function will turn up in seemingly unrelated contexts. I feel like putting it under applied math is kind of like giving up, because you know it's no good, but other people do it, so you know you'll get away with it... Ozob (talk) 20:59, 13 March 2010 (UTC)[reply]
I agree that we need a "general" section as a catchall. For example, we have articles on journals, professional societies, and mathematics competitions. And television shows, I believe.
I don't object to the current "basics" section, although it would be nice to expand it once we can have more than one field per article. For example, right now Pentagon is in geometry, but it would be nice to have that sort of thing listed in "basics" as well. — Carl (CBM · talk) 21:15, 13 March 2010 (UTC)[reply]
Where would the article Differential analyser appear in the above classification? It is computer science but it isn't discrete mathematics. Bethnim (talk) 22:20, 13 March 2010 (UTC)[reply]
I think Computer science should be in the applied section. Combinatorics should be a standalone category, and there shouldn't be a discrete section at all. Bethnim (talk) 22:33, 13 March 2010 (UTC)[reply]
Difference and functional equations is fine being in the analysis section. Bethnim (talk) 22:35, 13 March 2010 (UTC)[reply]
I don't think differential analyser is a mathematics article at all. It belongs to the history of computing.
Why do you think there shouldn't be a discrete mathematics section? Ozob (talk) 22:51, 13 March 2010 (UTC)[reply]
For one thing, although computer science is mostly about discrete computation, articles such as computable analysis and on continuous computation paradigms(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.1895&rep=rep1&type=pdf) , are not discrete mathematics. Solutions to Difference and functional equations can be continuous functions. So the only real category left is combinatorics and even that isn't just about discrete mathematics (analytic combinatorics, infinitary combinatorics). Bethnim (talk) 23:01, 13 March 2010 (UTC)[reply]
And many discrete concepts such as Discrete Calculus of Variations are direct analogs of notions in analysis and so should logically be categorized as analysis rather than discrete. Basically I don't think discreteness is a valid criteria for categorizing things. Bethnim (talk) 23:19, 13 March 2010 (UTC)[reply]
Hmm. Where would you put graph theory, matroid, and coding theory? Ozob (talk) 00:37, 14 March 2010 (UTC)[reply]
With coarse-grain I'd put graph theory and matroid theory in a combinatorics category, and put coding theory into applied. With finer-grain I'd put coding theory in Information theory and graph theory would have its own section. Bethnim (talk) 03:19, 14 March 2010 (UTC)[reply]
One thing that springs to mind with the above list is that it seems to be tuned for research so it would be hard to categorize basic freshman calculus subjects. Where, for example, would Derivative, Catenary, and Ratio go?--RDBury (talk) 00:08, 14 March 2010 (UTC)[reply]
Derivative would go under analysis, catenary under geometry, and ratio under general. (There isn't a general section in the list above, but consensus seems to be that we need one.) Ozob (talk) 00:21, 14 March 2010 (UTC)[reply]
Analysis is one of our categories, it's not in the MSC. Perhaps Catenary would go under Special functions since cosh, or under differential geometry since it's defined by curvature. My point is that these more general knowledge articles are going to be ambiguous at best. In any case, it would be a good idea to do a test classification of a couple of dozen articles before deciding on anything rather than trying to decide based purely on intuition.--RDBury (talk) 11:56, 14 March 2010 (UTC)[reply]
Ah, I thought you were asking a different question. I'm not particularly concerned about stuffing elementary articles into the MSC, because they won't fit; as we've already noted here, the MSC is intended for research. My intent was to use the MSC as a guide to classifying more advanced topics. But I don't feel like it really worked; I came up with roughly the classifications we have now, and I'm not really satisfied with them. I was struck with insight when I looked at the IMU list mentioned below: The IMU list has an entire section for Lie theory! In the MSC classification, Lie algebras are in 17Bxx, making them completely separate from Lie groups, which are in 22Exx. But you can't lump together all of 17-XX with 22-XX: For instance, finite dimensional algebras go in 17, topological groups go in 22, and the two subjects have hardly anything to do with each other (that I know of). So I feel like the MSC really doesn't capture this very well, and consequently no scheme based off of it will capture it either. Ozob (talk) 22:17, 15 March 2010 (UTC)[reply]

I've taken the liberty of slightly tweaking Ozob's list above. In particular, I moved special functions to analysis as any special function I know of is related to some differential equation/integral/series (though, of course, any specific special function may be in many other fields). But in looking through the list, it's clear that the top-level MSC is both too fine and too coarse. I do think it gives a good understanding of which fields we need though, but I don't think it succeeds in allowing for a clear way to classify any given article. RobHar (talk) 02:56, 14 March 2010 (UTC)[reply]

My main concern about Ozob's list is that it still has algebraic geometry under geometry. Is the idea to simply put both "algebra" and "geometry" fields on those articles? — Carl (CBM · talk) 11:28, 15 March 2010 (UTC)[reply]

An alternative to the MSC list is the IMU list: http://www.mathunion.org/activities/icm/icm-2010-program-structure/ where Algebraic geometry, Lie theory and Dynamical systems each get their own sections. Although under the IMU scheme, recursion theory is part of foundations, and category theory is part of algebra, and Control theory and optimization art lumped together (but excluding combinatorial optimization). Bethnim (talk) 15:55, 15 March 2010 (UTC)[reply]
I like that system a lot better, actually. We would need to tweak it a little, but I think it would be relatively easy to understand which section an article belongs in, unlike the current system. — Carl (CBM · talk) 18:27, 15 March 2010 (UTC)[reply]
I like this system better, too. I should comment that I did really intend to lump all kinds of geometry and topology together: I feel like hardly anyone in algebraic geometry seems to take differential geometry seriously enough, and yes, I did feel like the articles that had both geometric and algebraic content could be put under both. But the IMU system is better, I think; In practice, commutative algebra and algebraic and complex geometry are yoked together very tightly, but their connection with differential geometry is pretty slim. Ozob (talk) 22:23, 15 March 2010 (UTC)[reply]

Proposed merger of Mathematical constant and Constant (mathematics)

IRP has proposed a merger of Mathematical constant and Constant (mathematics). Discussion is here. Gandalf61 (talk) 11:04, 14 March 2010 (UTC)[reply]

Help with History of Logic?

The article History of logic has been nominated for a featured article here. The nominating editor has asked me for help concerning the post-WWII period, asking if forcing was the only significant result, and if "reverse mathematics" ought to be mentioned (see: User talk:Paul August#Logic after WW2). Any assistant anyone could give would be appreciated. Thanks, Paul August 15:21, 14 March 2010 (UTC)[reply]

Crooked egg curve

Could those who know algebraic geometry comment at Wikipedia:Articles for deletion/Crooked egg curve? Michael Hardy (talk) 03:26, 15 March 2010 (UTC)[reply]

Optimization algorithm

Optimization algorithm is currently a redirect and until less than an hour ago, didn't even exist as a redirect. I found that quite surprising.

Should there be such an article? Michael Hardy (talk) 04:26, 15 March 2010 (UTC)[reply]

However, Optimization (mathematics) exists. What else should it be? Boris Tsirelson (talk) 10:09, 15 March 2010 (UTC)[reply]

Gauss interpolation formula

I am going now to create an article about equidistant interpolation but have a trouble with Gauss interpolation formula. Can anyone please verify this formula:[1]. I have tried but unsuccessfully.--MathFacts (talk) 10:17, 15 March 2010 (UTC)[reply]

I thought that we had an article on difference equations, but it just links to recurrence relation which does not do the subject justice.
There are some errors on the Springer page to which you linked, and the notation is not clear. If I were you I would look for a better source. JRSpriggs (talk) 08:13, 16 March 2010 (UTC)[reply]
You might want to check whether the technique you are looking for is not already covered by interpolation. JRSpriggs (talk) 08:36, 16 March 2010 (UTC)[reply]

Square (algebra)

Square (algebra) is such a simple subject that it doesn't need attention from mathematicians. (?)

So one might be tempted to think.

I found it a horrible mess. I did some cleanup. At one point it asserted that the "general term" of the series

is

Someone out there is challenged by the task of understanding what "general term" means. Should that be who writes this article?

Which topics should be included is a question that needs to be considered by someone who has some competence. The present choice of topics is a bit weird, to say the least. Michael Hardy (talk) 18:42, 16 March 2010 (UTC)[reply]

Square number is also in questionable shape, if not as bad as square (algebra). Michael Hardy (talk) 18:59, 16 March 2010 (UTC)[reply]
My feeling is that Square (algebra), at least in its present form, reads too much like a chapter from a middle school algebra textbook and is too elementary in scope for an encyclopedia article. I would not be opposed to prodding of AfD-ing it. Nsk92 (talk) 20:22, 16 March 2010 (UTC)[reply]
At the risk of being called overly critical (again), there are many subjects like this; too elementary for many mathies to take an interest so that leaves the field open for people to fill up the article with things they sort of remember from high school. One that I tried to clean up recently was Ratio but I only did about half of it. Badly written and uninformative aren't criteria for deletion though, unless a complete rewrite is in order.--RDBury (talk) 21:08, 16 March 2010 (UTC)[reply]

I made some changes to the Applied Mathematics template a month or so ago. I proposed similar expansion and organization of the Pure Mathematics template. (Following the earlier discussion (on the mathematics template's talk page), I suggest that somebody develop a "Basic mathematics" template. ThanksKiefer.Wolfowitz (talk) 17:50, 18 March 2010 (UTC)[reply]

Industrial and applied mathematics

I boldly changed the title to reflect the established usage of SIAM, British, and European organizations, and reflecting the problem that "applied mathematics" is often narrowly understood in terms of the grand British tradition of using analytic methods on problems in the physical sciences, etc. Kiefer.Wolfowitz (talk) 21:00, 18 March 2010 (UTC)[reply]

Theoretical Computer Science

This is probably the best venue for this discussion. There was recently a discussion on the talk page for the "P versus NP problem" article. There appears to be a consensus that Theoretical Computer Science is not in Applied Mathematics. With this in mind, I propose that the Applied Mathematics footer be modified. I would be bold and just make the change, but several articles would likely need to be modified to fully effectuate the change. And it might also be affected by the discussion Kiefer started above. Jwesley78 18:11, 18 March 2010 (UTC)[reply]

Certainly, there is no such consensus. As the voice that opposes your visison of things perhaps the most, I would like to point out that there is agreement that there is overlap between these disciplines. While it may be agreed that statement that TCS is branch of applied mathematics does not reflect the situation, it has also been pointed out that on applied mathematics template was listed as branch of applied mathematics (apparently by a previous consensus opposite to one which is claimed), and it has also been pointed out that many theoretical computer scientists work at applied mathematics departments at places like MIT rather than in CS departments. To disregard all this and say that there is a "concensus" while there is ongoing controversy is awful misrepresentation of facts.Dlakavi (talk) 12:56, 19 March 2010 (UTC)[reply]
Sounds good to me. CRGreathouse (t | c) 18:14, 18 March 2010 (UTC)[reply]
Your "consensus" needs clarification, because many mentioned that theoretical CS is often housed in math departments, particularly in applied mathematics divisions, notably at MIT. There was consensus that Theoretical CS is not part of traditional British "applied mathematics", but that is hardly relevant to contemporary applied mathematics as defined by reliable sources, especially SIAM and the International Mathematics Union
  • Engquist, Björn (ed.) (2001). Mathematics Unlimited: 2001 and Beyond. Berlin: Springer. p. 1225. ISBN 9783540669135. {{cite book}}: |first= has generic name (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
whose current President is Lovasz.
SIAM publishes
all of which are covered by the CS reviewing journal; all of these journals have significant overlap in editorial boards, author, references, with the leading CS journals. This argument could be strengthened by looking at the ISI list of journals in CS theory, but I assume you recognize that theoretical CS has a substantial overlap with applied mathematics. (IMHO, this overlap is much larger than the overlap with mathematical statistics.)
SIAM cosponsors many of the main prizes in theoretical computer science (or at least prizes that prominently feature theoretical computer scientists): George Dantzig prize, the Fulkerson Prize, etc.
The Theoretical computer science article plants the CS flag on many mathematical theories: Category theory, Graph theory, number theory, mathematical logic, etc.! (Why avoid the connection to mathematics now?)
I believe that the previous editors are rightly concerned that Theoretical CS has much less overlap with the grand British tradish of "applied mathematics", with analytic methods (and some heuristics) applied to problems of physical science---But what about the extensive literature on formal power series and automata theory? Thanks Kiefer.Wolfowitz (talk) 19:09, 18 March 2010 (UTC)[reply]
  • The journals you list are not really journals in "Theoretical Computer Science". JoDaAM is close enough, but this argument is still not very strong. SIAM, like the ACM (Association for Computing Machinery), might be broader than its name would imply. Jwesley78 20:10, 18 March 2010 (UTC)[reply]
  • (I also made this comment here.) So there's no confusion, the question is not to what extent are TCS and Math related; they obviously are. In some ways, Computer Science (as a whole) is an "applied" branch off of Mathematics. The question here is specifically whether "Theoretical Computer Science" should be lumped into the category of "Applied Mathematics". TCS is the least "applied" of any field in CS. Many topics in TCS have no direct application. Since TCS is often not-in-any-way "applied", placing TCS within AM might be worse than placing another more applied field of CS (e.g., Artificial Intelligence) into AM. Jwesley78 20:04, 18 March 2010 (UTC)[reply]
I made this comment there as well: ::
Can we try to change the name of the template so that it is somewhat coherent and lists the topics of mathematical research that have strong ties to (empirical) science, engineering, and other concerns? I would suggest "Applicable Mathematics" or "Mathematics for Applications". Would either name be better and acceptable? Kiefer.Wolfowitz (talk) 20:12, 18 March 2010 (UTC) I changed the title to the established "Industrial and Applied Mathematics", (as noted above) because the others are less established and objectionable. Kiefer.Wolfowitz (talk) 21:02, 18 March 2010 (UTC)[reply]

Computational mathematics

Following the discussion, I removed "Theoretical computer science" and replaced it with "Computational mathematics", there being no short way to write "mathematics associated with theoretical computer science". Does this deal with the problem? (It may be useful to change the name of the footer to "industrial and applied mathematics", which is established at least).Kiefer.Wolfowitz (talk) 20:36, 18 March 2010 (UTC)[reply]

I like this change. Some of the subtopics should be reassigned or removed; It's definitely a move in the right direction. Thanks, Jwesley78 20:42, 18 March 2010 (UTC)[reply]
I object to the name "computational mathematics". Nobody calls it this; it's called "theoretical computer science". It is not Wikipedia's purpose to innovate. Calling this discipline anything other than "theoretical computer science" will only confuse people. Until we can sort this out, I've reverted. Ozob (talk) 00:41, 19 March 2010 (UTC)[reply]
While I have no extremly strong objection to the change, it is misleading. Michael Sipser is theoretical computer scientist and is in the applied mathematics department at MIT. Many people who are important in theoretical computer science have degree from applied mathematics departments (Peter Shor is both a graduate of MIT applied math PhD program, and a professor there, and yet he is the leading person in quantum computation theory; even more traditional parts of TCS have such people alot). It is no more fair to say that this is part of mathematics as it is part of computer science. These are interdisciplinary areas, and being listed in more than one place is not inaccurate. Daniel Spielman is at applied mathematics department at Yale, has finished applied mathematics PhD at MIT and has been at MIT applied math department, and is one of the persons in Theoretical CS at yale (http://theory.cs.yale.edu/)... I am sure many more examples can be found. Dlakavi (talk) 13:07, 19 March 2010 (UTC)[reply]
That's a silly argument. Departments have names that often result from tradition or accidents of university-specific history and politics. Go through the winners of the Gödel Prize and you'll find plenty of confusion. Avi Wigderson is at the School of Mathematics (IAS, Princeton). But he was in the computer science department at the Weizmann institute. Babai has a Ph.D. in math, works in a CS department, organizes the Budapest Semesters in Mathematics. Saks heads the Mathematics Graduate Program at Rutgers while Szegedy, also at Rutgers, is in the CS department. Razborov who was at Steklov (math) is currently in Chicago (cs). The thing is, the name of a department is not a great indicator. When my department switched its name from Computer Science Department to Software Engineering Department, I did not become more of an engineer. And my students now get degrees with a different name but they take the same courses, do the same research. (But the name change did allow us to hire three new profs) Pichpich (talk) 23:41, 19 March 2010 (UTC)[reply]
It is not silly at all. If a math department employs a theoretical computer scientist, then, by definition, they believe that he is doing math. Or at least that what he is doing is awfully close to math, close enough that they think he fits in. We all agree—you gave examples yourself—that there are theoretical computer scientists in mathematics departments. (I know some.) Therefore some people believe that theoretical computer science is a branch of math, so the name is not inappropriate. Wikipedia does not introduce new or reshape old terminology; it follows the sources. If reliable sources say that theoretical computer science is a branch of math, who are we to argue? Ozob (talk) 03:40, 21 March 2010 (UTC)[reply]
The original question was whether TCS is "applied" mathematics. We've strayed from the original question, asking instead whether TCS should be called "Mathematics" (of course it should). In my perspective, the very fact that the field is called "Theoretical Computer Science" should be enough to conclude that it's not "applied" in nature. Jwesley78 03:59, 21 March 2010 (UTC)[reply]

What is "Applied Math"?

Re:

There are many subjects listed in the "Applied Math" footer that do not belong. Apparently there's a disagreement about which attributes distinguish "applied" from "pure" mathematics. This might be a good place to discuss it. Jwesley78 21:06, 18 March 2010 (UTC)[reply]

Can we agree that the present template does reflect the IMU book's discussion of mathematics (pursued closely with empirical science and applications) and the applications featured by recent Fields medalists? (It does not try to represent the curriculum in Glascow for example.) Kiefer.Wolfowitz (talk) 21:41, 18 March 2010 (UTC)[reply]
Look, there's a difference between these nav templates and explicit claims in an article about what is a branch of what. I don't really like nav templates and wouldn't mind if they were just deleted, but if we have to have them, it's not unreasonable to suppose that someone looking for ways to apply math would be interested in some CS-related links. That's not the same thing as making the frankly weird claim that P?=NP is a question of applied math. --Trovatore (talk) 21:52, 18 March 2010 (UTC)[reply]
Nobody put the P?=NP question on the template. BTW, Smale and the Clay Foundation think that P=NP? is a central question of mathematics (after von Neumann's time), and Smale's judgement has been relied on by mathematicians for many decades; c.f. Vladimir I. Arnol'd acknowledgment in the Notices of the AMS article listed on the V. I. Arnold page.
No, but this discussion didn't arise because of the template; it arose out of an edit war on the P?=NP page.
I don't have any problem saying P?=NP is a question of mathematics. I don't think it's a question of applied mathematics. It strikes me as very far towards the theoretical end. Note that a proof (in either direction, although we all know that P!=NP so there's really only one candidate) would not necessarily have any applications at all to real-world problems. --Trovatore (talk) 22:37, 18 March 2010 (UTC)[reply]
I am somewhat puzzled; would you please explain a bit, why a proof of P=NP (yes, if in this direction) would not apply to real word? Boris Tsirelson (talk) 07:07, 19 March 2010 (UTC)[reply]
All it would (necessarily) do is tell you that there is a polynomial-time algorithm for (name your favorite NP-but-not-obviously P problem). It wouldn't necessarily tell you what that algo is. Even if it did, the bound might be n1000000 or something, which for practical purposes might as well be the Ackermann function. --Trovatore (talk) 08:20, 19 March 2010 (UTC)[reply]
I see, thanks. Boris Tsirelson (talk) 11:46, 19 March 2010 (UTC)[reply]
There is no consensus on the definition of applied mathematics or the existence of applied mathematics; see Vladimir I. Arnol'd acknowledgment in the Notices of the AMS article listed on the V. I. Arnold page. Kiefer.Wolfowitz (talk) 22:54, 18 March 2010 (UTC)[reply]
No, of course there's not a consensus on the definition, and there's never going to be. That's not a problem. Putting a claim that a particular question is part of applied math, when actually very few workers in the field think of it that way, is a problem. --Trovatore (talk) 22:56, 18 March 2010 (UTC)[reply]
Some of the more notable people interested in the question (P!=NP) - like Daniel Spielman of Yale - are actually at applied math departments. If a prize is offered by the major institution that wants to "disseminate mathematical knowledge" to the question, why is then wrong to say that it is an applied mathematics question too. Mathematicians (pure and applied), people form CS departments, logicians etc all pertain to this fundamental question. Dlakavi (talk) 13:32, 19 March 2010 (UTC)[reply]
Which ones do people have a problem with? Of course any such split will be very fuzzy but I see no problem with classifying P≠NP as applied even if it probably will require some rather abstract logic for its solution if people don't just give up and accept it as an axiom. The distinction just makes it easier to find things. It's like the amount of information needed to describe a picture. The top is sky and the bottom is ground to start with. That doesn't mean a bird in the sky is blue or made of air. Dmcq (talk) 12:16, 19 March 2010 (UTC)[reply]

Theoretical computer science: The Myths of a Discrete-Continuous Divide and a Pure-Applied Divide

If applied means analysis then Theoretical computer science does overlap with applied. Not that the talking about pure/applied makes much sense. The applied math template should be merged with the main math footer template.

Theoretical computer science considers both discrete and continuous computational processes, and both discrete and continuous input/output:

Including P!=NP over R

Many concepts in analysis have discrete versions giving rise to discrete analysis. See discrete mathematics for examples. So analysis shouldn't be contrasted with discrete. Analysis isn't just about limits or continuity, it is a collection of concepts and methods about functions and function spaces, be they discrete or continuous.

Other topics often categorized as part of discrete mathematics:

What is the most pure mathematics subject ? The queen of mathematics, number theory.

What is the most applied ? Mathematical physics.

Here are the Google results for "Number theory and physics"

Number theory isn't concerned solely discrete objects: Transcendental numbers, Diophantine approximation, p-adic analysis, function fields

There is no pure. There is no applied. And discrete mathematics as a distinct branch of mathematics is a nonsense.

Bethnim (talk) 13:04, 19 March 2010 (UTC)[reply]

Proposed deletion of Zenzizenzizenzic

Discussion at Wikipedia:Articles for deletion/Zenzizenzizenzic (2nd nomination). Gandalf61 (talk) 11:29, 19 March 2010 (UTC)[reply]

Professor of mathematics

Professor of mathematics is a red link. Two articles link to it. Should we redirect it? Or create an article? Or delete the links? Or let our posterity decide six months from now? Michael Hardy (talk) 22:26, 19 March 2010 (UTC)[reply]

De-link them. It's a phrase of ordinary English, understandable from its component words; shouldn't have an article. --Trovatore (talk) 22:28, 19 March 2010 (UTC)[reply]

OK, I've done that. Now a question of no immediate practical import occurs to me. Is there any way to tell which articles formerly linked to a particular title? Michael Hardy (talk) 02:38, 20 March 2010 (UTC)[reply]

No practical way that I know of. (In principle, of course, you could enumerate the history of every article in the encyclopedia.) This is the rationale, I think, for why you're not supposed to empty categories that you've proposed for deletion. --Trovatore (talk) 04:35, 20 March 2010 (UTC)[reply]

Article assessment proposal

I'd like to go ahead and make a proposal regarding changes discussed above to the article assessment categories and such.

1. Change list of "fields"

The current list is:

I would like to propose the following list:

  • General (taking in the current "basics" field)
  • History & biography
  • Algebra
  • Algebraic geometry
  • Analysis
  • Applied mathematics
  • Combinatorics (taking some of the content of the current "Discrete" field)
  • Foundations, logic, & set theory
  • Geometry
  • Mathematical physics
  • Number theory
  • Probability & statistics
  • Theoretical computer science (taking some of the content of the current "Discrete" field)
  • Topology

In words:

  • I think we can consolidate the "basics" field into the "General" field and have the latter be about "general mathematics" and "things generally about the field/study of mathematics".
  • Rename "mathematicians" and consolidate it with articles on the history to form "History & biography"
  • Add "Algebraic geometry" to deal with algebraic geometry and complex geometry and the such
  • Remove "Discrete mathematics" and "replace" with "Combinatorics": I've always consider discrete mathematics to be, at worst: the name of a course taught in math departments to computer science majors involving some basic abstract algebra, some graph theory, some combinatorics, and some elementary number theory; and at best: a convenient word to throw around if you have diverse interests in finite things. I put "replace" in quotes as some of the content would need to be moved in "Theoretical computer science"
  • Add "Theoretical computer science"

Thoughts? RobHar (talk) 23:40, 19 March 2010 (UTC)[reply]

I'm guessing you'd also want to include some of the content of "discrete" in geometry? But given some of your recent edits in which you claimed that a major subarea of discrete geometry was not even mathematics at all, I'm not sure. Does graph theory count as combinatorics or topology, in your view (it could reasonably be either)? Is category theory algebra, or something else? —David Eppstein (talk) 00:20, 20 March 2010 (UTC)[reply]
I had a feeling that my recent mistake would come up here. See my talk page for some comments on that (I might say I don't see how my recent mistake affects my proposal here at all). My second proposal is to allow placing things in several fields which deals with some of your questions. More specifically though, part of my suggestions are related to the discussion above, where a few people seemed to like the IMU list which has no discrete math category (it places "discrete geometry" in geometry, if that's what your first question is about, though I think most discrete geometry in wiki is already placed in the geometry field). Re graph theory: is it currently a problem whether graph theory is "discrete math" or "topology"? There are certainly topological methods in graph theory. Re category theory: I'm not proposing anything on that subject. It is currently listed in the "Foundations" description and if you look around a lot of category theory articles are listed in that field. I've always felt uncomfortable with that as there are many categorical things that I consider more appropriately as algebra (though some of it is clearly more foundational in nature). I would say that I don't believe anything in my proposal changes the way category theory is treated. Are you trying to say that you think something should be done specifically to deal with it? RobHar (talk) 01:04, 20 March 2010 (UTC)[reply]
By the way, since I suspect this didn't come through very clearly: mostly I like the IMU list and mostly I think your proposed changes are good. I was quibbling a little with the rationale, but not really with the changes themselves. And I was wondering about some edge cases, but there will always be edge cases. —David Eppstein (talk) 04:58, 20 March 2010 (UTC)[reply]
To the 3 changes you proposed:
  • Merge basics and general -- sounds good. They're both not too populated compared to some of the other categories, so merging wouldn't create an overly large category.
  • Merge mathematicians with history -- also sounds good. Again, history has very few articles, so merging sounds good to me.
  • Add algebraic geometry -- no comments.
  • Split discrete into combinatorics and TCS; recategorize other things -- This sounds good too. Things that are in currently in discrete but have very little to do with combinatorics/TCS should be recategorized. For example Discrete Fourier transform should not be categorized as discrete just because it has that word in the title.
This, of course, doesn't address the point about using fields from the IMU for categorization, but it looks like a step in the right direction. --Robin (talk) 03:55, 20 March 2010 (UTC)[reply]

It was suggested above to think about using the fields from the IMU (see [2]). At the least, I'd like to think about how to group the fields there to arrive at our list. Unfortunately, I have been traveling, so I will not be able to write more about this until tomorrow sometime. — Carl (CBM · talk) 02:46, 20 March 2010 (UTC)[reply]

I strongly support using the IMU list as a template. The absence of designated fields for algebraic geometry, Lie theory, and dynamical systems is a fundamental weakness of the current wiki classification scheme: articles in these subjects are scattered through several fields such as algebra, geometry, analysis, and applied mathematics, often without a compelling reason; the IMU list certainly takes care of that issue as well. Arcfrk (talk) 05:36, 20 March 2010 (UTC)[reply]
The IMU is nearly the same as the proposed list and it has some additions that wouldn't hurt. The main differences are:
  1. While we just have Applied mathematics the IMU has Numerical analysis and scientific computing, Control theory and optimization, and Mathematics in science and technology.
  2. While we just have Analysis the IMU also has Functional analysis and applications, Dynamical systems and ordinary differential equations, and Partial differential equations.
  3. We have General while the IMU has Mathematics education and popularization of mathematics. While much of the General topics might go into Math. Ed., we do have articles that are specific to Math. Ed. so I'm not sure it would be wise to try to merge them.
  4. The IMU has Lie theory and generalizations. We have this under Algebra but perhaps this has enough crossover with analysis and topology that should be split off.
One thing that should be kept in mind is what purpose this classification serves. We already have have multiple other ways for people to find articles they're interested in (categories, OoK, etc.). So unless there is a positive benefit to come out of this that outweighs the work that will go into categorizing the articles, we should just drop the subject parameter and save ourselves the effort. I personally think the benefit is in directing effort; e.g. I like to work on geometry articles and it's handy to have a ready made list of geometry articles that are stub or start class. On that basis the categories should be based on areas of expertise and/or preference. Given that, it's not a good idea to make the classification too fine; if the people who want to edit articles on ODEs are also going to want to edit articles on PDEs then separating just adds work with no benefit. The IMU adds five or six more subjects; I have no objection to adding them as long as it can be argued that they help people find articles that need work.--RDBury (talk) 08:14, 20 March 2010 (UTC)[reply]
One thing I've felt is missing is 'recreational'. They tend to be stuck under general but I think a distinct 'field' would be good even if it isn't a field as such. Dmcq (talk) 10:49, 20 March 2010 (UTC)[reply]
I guess I can comment on what thoughts I had that got me from our current list and the IMU list to the list I proposed. In our current list, I found that I could never place algebraic geometry properly: many concepts aren't really geometry, but they're what one would call a geometric notion in the subject, rather than an algebraic notion (like some sort of "global" algebraic behaviour analogous to a geometric concept for example). I think this holds for complex analytic geometry as well (and the more recent rigid analytic geometry in the nonarchimedean world), so as the IMU does, I would suggest placing that in the "algebraic geometry" field (which could be renamed to include "complex" in the title). I also felt that, for the most part, functional analysis fits into "analysis", as do ODEs and PDEs. Of course, some articles in these latter subjects fit well into "mathematical physics", and the numerical methods would fit into "applied", but I'm pretty sure mathematically speaking, functional analysis, ODEs and PDEs fall inside the field of analysis. I felt dynamical systems (from a mathematical point of view) fit into "analysis" or possibly "probability". My understanding of the use of the term applied mathematics within mathematics is that it refers to a specific field that includes numerical analysis, computational aspects, and such, so that it would contain control theory and optimization. Though I'm not sure how everything that fits under "Mathematics in science and technology" would fit in. Perhaps it could be lumped in with applied. The Lie theory is a touchy one. To me, Lie theory fits within representation theory and geometry. There are analytic and topological aspects, but to me they aren't what the subject is about. When you look at the IMU list's subtopics in the Lie theory section, they might all fit pretty cleanly into either geometry or algebra. But perhaps this is another subject that, like algebraic geometry, could use a field of its own. Before doing that, I'd like to make sure that it doesn't imply that all sorts of other broderline subjects should have their own field. As for education, there was some discussion above that seemed to suggest there aren't very many such articles, and that for now at least they could fit into "general". Regarding dmcq suggestion of a "recreational mathematics" field, I could see the use in this, though I wonder if placing an article in that field might offend some people in some cases; maybe that's not an issue though. I think I'll stop now. RobHar (talk) 15:19, 20 March 2010 (UTC)[reply]
About "recreational" math, firstly we don't have too many article to warrant a new field. Secondly, as pointed out, it might be hard to classify and may offend some people (like is Tetris being NP-complete recreational math?). --Robin (talk) 16:38, 20 March 2010 (UTC)[reply]
We already classify quite a few article as such under Category:Recreational mathematics. Most of them don't seem to have been tagged as maths and those which have are variously discrete maths or general or some such non-descript field though I see the origami ones are classified as geometry. Dmcq (talk) 17:24, 20 March 2010 (UTC)[reply]
It is worth discussing better ways than the current "basics" and "general" to distinguish between fundamental routine mathematics and recreational general interest mathematics, bearing in mind that this distinction is for editors, not readers, and so need not have anything to do with the category classification system. Geometry guy 23:02, 21 March 2010 (UTC)[reply]

2. Allow multiple fields per article

Currently, you can only specify one field in the maths rating template. I'd like to propose allowing more than one. Math isn't always so clear cut. RobHar (talk) 23:40, 19 March 2010 (UTC)[reply]

As Carl suggested above, this seems like a very useful feature to have. I don't think too many people would oppose this idea. --Robin (talk) 03:57, 20 March 2010 (UTC)[reply]
I agree with RDBury's comment above that we should first find out what we want to have this categorisation for. Currently every article can only be categorised in one field, and that potentially has advantages because it partitions our articles. If we allow several fields per article, that might also have advantages. We can't tell which is better unless we know what we wont to do with the fields.
So what is it that we (can or want to) do with the fields that we can't do with the normal category system? Hans Adler 15:45, 20 March 2010 (UTC)[reply]
If Wikipedia was able to do database operations on categories it would certainly solve a few problems. Dmcq (talk) 21:41, 20 March 2010 (UTC)[reply]
The only problem might be overclassification: remember that WikiProject assessments are for editors, not readers, and editors are likely to have a greater understanding of the limitations of any classification system. Geometry guy 22:53, 21 March 2010 (UTC)[reply]
Re Hans: I think the main benefit of the fields is to make grouped tables such as User:WP 1.0 bot/Tables/Custom/Mathematics-1 and User:VeblenBot/MainTable, and to let people make lists of articles in a certain field that are of a certain quality and/or priority. The main math table has about 7,700 articles, which is great, but it's too big to browse. Personally, I only want to browse articles related to my specialty, and I would guess some others feel the same way.
The real issue between using fields in the wikiproject template and using categories on the article is on how we prefer to do the maintenance. If we use fields, then we need people to update them on each article, so there is ongoing maintenance to fix up newly-tagged articles. If we use categories, then we need to maintain a list by field of the categories that should be read to make a list for that field. This list requires ongoing maintenance as categories are created and deleted.
Either of those methods works, it's just a question of which sort of ongoing maintenance we prefer. Actually, right now I feel more in favor of the category system. I was planning to use the categories anyway to update the field ratings once we settle on a new selection of fields. I could just change the whole system to work with article categories. — Carl (CBM · talk) 12:05, 22 March 2010 (UTC)[reply]
Using the field updates a relevant category of class by field. The update is immediate but it is more of an effort to maintain.Using categories would mean a bot would have to go through the categories every so often and perhaps update things overnight but would be much more flexible. I think yes I'm inclining more to supporting a bot and forgetting about the field. Dmcq (talk) 12:23, 22 March 2010 (UTC)[reply]
(ec) Thanks, that makes sense. I guess I wasn't thinking very clearly when I asked: I thought it would be enough to use the top-level categories for this purpose. But of course some articles are in subcategories that imply membership in the parent category, and others are in subcategories that don't imply such a thing. So it seems there could be a real maintainability nightmare with that.
I have an idea for a system using hidden categories, but will take it to your talk page. Hans Adler 12:27, 22 March 2010 (UTC)[reply]

3. Add C rating (leave B+ rating)

Currently, the possible quality ratings for math articles are Stub, Start, B, B+, GA, A, FA. There was a discussion at the assessment talk page about changing this. I'd like to propose adding a 'C' rating to this scheme. I find there are articles better than a 'Start', but not yet a 'B'. Additionally, most (all?) other projects have a 'C' rating (so sometimes our articles end up with C ratings, which we must correct). RobHar (talk) 23:40, 19 March 2010 (UTC)[reply]

Agreed. Adding C is a good idea. Leaving the B+ rating as it is makes this a smooth and easy transition. --Robin (talk) 03:37, 20 March 2010 (UTC)[reply]
There was pretty much a consensus to add C except for User:CBM who argued, if I may paraphrase, that C isn't needed in general, much less in WPM. I for one am going to be bold and just start using the C rating where it seems appropriate. If no one else wants to do it I'll try to write up a draft for changes to the rating criteria.--RDBury (talk) 07:02, 20 March 2010 (UTC)[reply]
Seems good to me. B+ is useful where you think the article is well written but don't want to faff around with GA. Dmcq (talk) 10:37, 20 March 2010 (UTC)[reply]
C may be unnecessary for WPM, but it is also harmless. Geometry guy 22:51, 21 March 2010 (UTC)[reply]

Biographies

If we include biography & history as suggested above, there needs to be some cooperation with the Wikiproject Biographies, which is doing their own separate article assessment. At least it doesn't make much sense sense when the article's discussion pages get 2 competing templates.--Kmhkmh (talk) 17:02, 20 March 2010 (UTC)[reply]

Actually this already occurs quite often. For us, especially with the wiki project physics and computer science amongst others (e.g [3], [4], [5]). I think I've seen bots (and people) come around and set all ratings to the same class on such pages, though I'm not sure that's a good idea. Also, note that we already have the field "mathematicians" and that I was mostly just suggestion renaming this biography and merging it with history. RobHar (talk) 18:01, 20 March 2010 (UTC)[reply]
I don't think that we should use "biography" as a synonym for "history". For example, Principia Mathematica is an article on a topic from history, but not a "biography". — Carl (CBM · talk) 11:55, 22 March 2010 (UTC)[reply]

User:Noodle snacks didn't do a nomination this week so I decided to try one. See Wikipedia:Featured picture candidates/File:Helicatenoid.gif. If you have some knowledge of differential geometry it would be helpful to check the caption; I tried to describe a local isometry in layman's terms, but maybe it could be done better.--RDBury (talk) 06:50, 20 March 2010 (UTC)[reply]

Some editors use the "financial mathematics" rather than the standard term "mathematical finance". This seems as imperialistic as the use of "Bayesian mathematics" (sic.) to refer to Bayesian statistics (imho)! Kiefer.Wolfowitz (talk) 19:10, 20 March 2010 (UTC)[reply]

Mathematics template (footer):

Here is the current template (footer):

Would the following navigational-box template be an improvement, and useful for further discussion?

Thanks! Kiefer.Wolfowitz (talk) 20:05, 20 March 2010 (UTC)[reply]

To begin with, I think it's strange to lump algebra and combinatorics together (and put number theory in there), yet have a separate "algebras" section. I also find it strange to have two sections called analysis. RobHar (talk) 21:01, 20 March 2010 (UTC)[reply]
True, true. I created larger groups of algebra and analysis, and then put number theory as its own category. Kiefer.Wolfowitz (talk) 22:02, 20 March 2010 (UTC)[reply]
What is the point of this discussion? There is a clear and settled consensus against this sort of template on mathematics articles. --Trovatore (talk) 22:38, 20 March 2010 (UTC)[reply]
Your precise reference to this "clear and settled consensus" would help me and perhaps some other editors (involved in this week's extensive discussion). This template exists and is used in articles, so it is worth discussing.
I don't see the need for anything like that in maths articles, as generally relevant links are or should be in the article. E.g. when covering a maths topic well it inevitably mentions related topics that it depends on, that depend on it, or that are related in some other way, and mention them in context so it is clear how they relate. It's missing a lot of basic topics which would only make it bigger Number, Complex Number, Vector, Matrix, Tensor, Function, Dimension, Plane, as well as important mathematical topics from mathematical physics.
It's different from a template like Template:Neil Gaiman where one of those articles generally refers to few, maybe only one (the author), of the others, and the number of articles is limited (in this case to his works that have articles). Maths is much bigger and much more interrelated, so much trickier to summarise in a navigation box. Better to make sure articles are properly categorised and include a prominent link to Mathematics which sort of does the same job.--JohnBlackburnewordsdeeds 00:36, 21 March 2010 (UTC)[reply]

We also have Portal:Mathematics with a section "Topics in mathematics" that looks quite good on first sight. It might be good if the presentation there could be harmonised with the template, so that people find it easier to switch from one to the other. Hans Adler 00:56, 21 March 2010 (UTC)[reply]

IMO most of these navigation templates are more trouble than they're worth and should be used as sparingly as possible. Changing a modestly sized one into a half page is a step in the wrong direction.--RDBury (talk) 10:02, 21 March 2010 (UTC)[reply]

Animation at Tesseract

Another editor might be able to cast a fresh eye at Talk:Tesseract#New_Animations where User:Jgmoxness wishes to insert a new animation into the article but I'm objecting. Dmcq (talk) 21:35, 20 March 2010 (UTC)[reply]

Multiplicative navigation over natural numbers

Please, discuss this proposal. Incnis Mrsi (talk) 21:30, 21 March 2010 (UTC)[reply]

Special functions

Our special functions articles are, by and large, in a dreadful state. They are typically nothing more than a minimally differentiated list of formulas. This situation appears to be exacerbated by the edits of A. Pichler (talk · contribs · logs), whose contributions to the project have, for a long time, consisted almost entirely of adding unreferenced identities to special function articles, some of which are quite dubious. User:Stevenj has warned him than once in the past to give references for the content he adds, but he continues not to give them. So Stevenj continues to revert many of this editor's contributions. More expert eyes on the contributions of this editor would be helpful. I've already gone one round with him. Sławomir Biały (talk) 10:43, 22 March 2010 (UTC)[reply]

This article requires attention from an algebraic topologist. It appears to contain some recent research (see the refs), and I'd like to have some idea of the notability of the topic. There is now a version at Künneth theorem that contains the material; and after Stanley–Reisner ring was updated by User:Arcfrk some other related material was reposted at Stanley-Reisner ring (binary operations). There is an underlying point at the chain level about simplicial complexes, it seems, but if it is worth inclusion here, it might be more in the nature of a remark that should be in simplicial complex or simplicial homology. Charles Matthews (talk) 13:50, 22 March 2010 (UTC)[reply]

Blatantly clearly the work of a newbie who is a mathematician. I can't do everything tonight. This person needs to get introduced to Wikipedia conventions, etc. Michael Hardy (talk) 06:24, 23 March 2010 (UTC)[reply]
I haven't read the article carefully yet, but it reads like an essay seems to be inflating the value of the research made by the person who wrote the article ([6]). Aenar (talk) 18:10, 23 March 2010 (UTC)[reply]

C rating draft

Per the consensus mentioned above, I added a draft of criteria for C rating to the Wikipedia:WikiProject Mathematics/Wikipedia 1.0. In the process I tweaked the B rating criteria to make some room by raising the bar a bit. I think this is reasonable because if you look at the Wikipedia 1.0 B criteria, which is used by nearly every other project, their B rating is very close to our B+ rating. I'll allow some time for comments/revisions and then remove the "(draft)" from the criteria. It seems to be that the next step is to update the {{maths rating}} template so it sorts the C rated articles into Category:C-Class mathematics articles.

Discrete Math Category

Why do we have a Category:Discrete mathematics ? Surely this is just as absurd as having a Category:Continuous mathematics containing things like euclidean geometry, sine function, real numbers, Set theory, manifold, Continuous symmetry. And information theory which is currently in the discrete mathematics category could just as easily be in a continuous category. I propose deleting this category. Bethnim (talk) 12:11, 23 March 2010 (UTC)[reply]

I suppose there is a point to the effect that combinatorics is a research-oriented classification, while discrete mathematics is more of a pedagogically-oriented classification. Category:Subdivisions of mathematics is the over-category of both, and defines itself as "Fields and other subdivisions of mathematics". Which doesn't rule out such a subcategory, if it is useful for navigation. Charles Matthews (talk) 12:53, 23 March 2010 (UTC)[reply]
The collection of things that are included in the Discrete math category is kind of random, though. Maybe it should only have a few categories in it, with the articles all in more specific categories? —David Eppstein (talk) 15:43, 23 March 2010 (UTC)[reply]
Apart from things like DIMACS and Discrete Mathematics (journal), that seems a reasonable suggestion. Charles Matthews (talk) 16:18, 23 March 2010 (UTC)[reply]

This article's talk page is currently blank. 99% of the time, when I come across such an article, I try to attach a wikiproject banner to the talk page - though most of the time I can't say very much useful about the article rating, I know that the wikiproject involved usually finds this useful and particularly so if they subcribe to an automated article alerts service. However, when I naively tried to add {{WP Mathematics}} I got a rather scary-looking warning sign. Should I simply add {{maths rating}}, even though I wouldn't know how to rate it, in the hopes that somebody else will notice the blank template, come along and do so? Or are there WP Math reviewers who have a big list of unreviewed articles, regardless of whether they have a template on the talkpage, and are steadily working through the lot? Or infact, do y'all actually care about your project ratings at all, given that your articles (including this one) are included in comprehensive lists? I suppose what I really want to know is (a) if I come across such an article again, should I make an effort to bring its lack of a {{maths rating}} to somebody's attention, or even make an attempt at filling out the more obvious parts of it, or just leave it alone; and (b) the rather naive question, why isn't {{WP Mathematics}} a redirect to {{maths rating}}, since the latter seems to fulfil a similar if not entirely analogous purpose to the "WP Whatever" templates of other projects? TheGrappler (talk) 15:23, 23 March 2010 (UTC)[reply]