Jump to content

Herglotz–Zagier function: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
lnik
eponyms
Line 1: Line 1:
{{orphan}}
{{orphan}}


In mathematics, the '''Herglotz–Zagier function''' is the function
In mathematics, the '''Herglotz–Zagier function''', named after [[Gustav Herglotz]] and [[Don Zagier]], is the function


:<math>F(x)= \sum^{\infty}_{n=1} \left\{\frac{\Gamma^{\prime}(nx)}{\Gamma (nx)} -\log (nx)\right\} \frac{1}{n}.</math>
:<math>F(x)= \sum^{\infty}_{n=1} \left\{\frac{\Gamma^{\prime}(nx)}{\Gamma (nx)} -\log (nx)\right\} \frac{1}{n}.</math>

Revision as of 16:52, 24 March 2010

In mathematics, the Herglotz–Zagier function, named after Gustav Herglotz and Don Zagier, is the function

introduced by Zagier (1975) who used to to obtain a Kronecker limit formula for real quadratic fields.

References

  • Herglotz, G. (1923), Ber. Verh. Sächs. Gesellschaft. Wiss. Leipzig Math.-Phys. Kl., 75: 3–14 {{citation}}: Missing or empty |title= (help)
  • Masri, Riad (2004), "The Herglotz–Zagier function, double zeta functions, and values of L-series", Journal of Number Theory, 106 (2): 219–237, ISSN 0022-314X, MR2059072
  • Zagier, Don (1975), "A Kronecker limit formula for real quadratic fields", Mathematische Annalen, 213: 153–184, doi:10.1007/BF01343950, ISSN 0025-5831, MR0366877