Jump to content

Palindromic number: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m +link
m typos
Line 1: Line 1:
'''Palindromic number''' is a symmentrical [[number]] written in some base ''a'' as ''a''<sub>1</sub>''a''<sub>2</sub>''a''<sub>3</sub> ...|... ''a''<sub>3</sub>''a''<sub>2</sub>''a''<sub>1</sub>.
A '''palindromic number''' is a symmentrical [[number]] written in some base ''a'' as ''a''<sub>1</sub>''a''<sub>2</sub>''a''<sub>3</sub> ...|... ''a''<sub>3</sub>''a''<sub>2</sub>''a''<sub>1</sub>.


All numbers in base 10 with one digit {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} are palindromic ones. The number of palindromic numbers with two digits is 9: {11, 22, 33, 44, 55, 66, 77, 88, 99}. There are 90 palindromic numbers with three digits {101, 111, 121, 131, 141, 151, 161, 171, 181, 191, ..., 909, 919, 929, 939, 949, 959, 969, 979, 989, 999} and also 90 palindromic numbers with four digits {1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, ..., 9009, 9119, 9229, 9339, 9449, 9559, 9669, 9779, 9889, 9999}, so there are 199 palindromic naumbers below 10<sup>4</sup>. Below 10<sup>5</sup> there are 1099 palindromic numbers and for other exponents of 10<sup>n</sup> we have: 1999,10999,19999,109999,199999,1099999, ... ([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eismum.cgi SIDN A070199]). For some types of palindromic numbers these values are listed below in a table.
All numbers in [[number system|base]] [[decimal|10]] with one [[digit]] {[[zero|0]], [[one|1]], [[two|2]], [[three|3]], 4, 5, 6, 7, 8, 9} are palindromic ones. The number of palindromic numbers with two digits is 9: {11, 22, 33, 44, 55, 66, 77, 88, 99}. There are 90 palindromic numbers with three digits {101, 111, 121, 131, 141, 151, 161, 171, 181, 191, ..., 909, 919, 929, 939, 949, 959, 969, 979, 989, 999} and also 90 palindromic numbers with four digits {1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, ..., 9009, 9119, 9229, 9339, 9449, 9559, 9669, 9779, 9889, 9999}, so there are 199 palindromic naumbers below 10<sup>4</sup>. Below 10<sup>5</sup> there are 1099 palindromic numbers and for other exponents of 10<sup>n</sup> we have: 1999,10999,19999,109999,199999,1099999, ... ([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eismum.cgi SIDN A070199]). For some types of palindromic numbers these values are listed below in a table.


<table border="1" cellspacing="0" cellpadding="2">
<table border="1" cellspacing="0" cellpadding="2">
Line 107: Line 107:
</tr>
</tr>
<tr>
<tr>
<td bgcolor="#FFCC99">''n'' with an even number of [[prime factor]]s
<td bgcolor="#FFCC99">''n'' with an even number of distinct [[prime factor]]s
(&mu;(''n'')=1)</td>
(&mu;(''n'')=1)</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
Line 121: Line 121:
</tr>
</tr>
<tr>
<tr>
<td bgcolor="#FFCC99">''n'' with an odd number of prime factors
<td bgcolor="#FFCC99">''n'' with an odd number of distinct prime factors
(&mu;(''n'')=-1)</td>
(&mu;(''n'')=-1)</td>
<td>&nbsp;</td>
<td>&nbsp;</td>

Revision as of 20:20, 16 October 2002

A palindromic number is a symmentrical number written in some base a as a1a2a3 ...|... a3a2a1.

All numbers in base 10 with one digit {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} are palindromic ones. The number of palindromic numbers with two digits is 9: {11, 22, 33, 44, 55, 66, 77, 88, 99}. There are 90 palindromic numbers with three digits {101, 111, 121, 131, 141, 151, 161, 171, 181, 191, ..., 909, 919, 929, 939, 949, 959, 969, 979, 989, 999} and also 90 palindromic numbers with four digits {1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, ..., 9009, 9119, 9229, 9339, 9449, 9559, 9669, 9779, 9889, 9999}, so there are 199 palindromic naumbers below 104. Below 105 there are 1099 palindromic numbers and for other exponents of 10n we have: 1999,10999,19999,109999,199999,1099999, ... (SIDN A070199). For some types of palindromic numbers these values are listed below in a table.

  101 102 103 104 105 106 107 108 109 1010
n natural 9 90 199 1099 1999 10999 19999 109999 199999
n even 5 9 49 89 489          
n odd 5 10 60 110 610          
n perfect square 3 6 13 14 19    
n prime 4 5 20 113 781 5953
n squarefree 6 12 67 120 675          
n non-square free  (μ(n)=0) 3 6 41 78 423          
n square with prime root 2 3 5
n with an even number of distinct prime factors (μ(n)=1)                    
n with an odd number of distinct prime factors (μ(n)=-1)                    
                     
add more