Engineer: Difference between revisions
No edit summary |
|||
Line 19: | Line 19: | ||
==Roles and expertise== |
==Roles and expertise== |
||
===Design=== |
===Design=== |
||
Hey EVERYONE IN DRAFTING! |
Hey EVERYONE IN DRAFTING! hi |
||
Engineers develop new technological solutions. During the [[engineering design process]], the responsibilities of the engineer may include defining problems, conducting and narrowing research, analyzing criteria, finding and analyzing solutions, and making decisions. Much of an engineer's time is spent on researching, locating, applying, and transferring information.<ref>A.Eide, R.Jenison, L.Mashaw, L.Northup. Engineering: Fundamentals and Problem Solving. New York City: McGraw-Hill Companies Inc.,2002</ref> |
Engineers develop new technological solutions. During the [[engineering design process]], the responsibilities of the engineer may include defining problems, conducting and narrowing research, analyzing criteria, finding and analyzing solutions, and making decisions. Much of an engineer's time is spent on researching, locating, applying, and transferring information.<ref>A.Eide, R.Jenison, L.Mashaw, L.Northup. Engineering: Fundamentals and Problem Solving. New York City: McGraw-Hill Companies Inc.,2002</ref> |
||
Revision as of 13:04, 1 September 2010
Occupation | |
---|---|
Names | Engineer |
Occupation type | Profession |
Activity sectors | Applied sciences |
Description | |
Competencies | Mathematics, scientific knowledge, management skills |
Education required | Engineering education |
Fields of employment | Research and development, industry, business |
Related jobs | Scientist, architect, project manager |
An engineer is a professional practitioner of engineering, concerned with applying scientific knowledge, mathematics and ingenuity to develop solutions for technical problems. Engineers design materials, structures, machines and systems while considering the limitations imposed by practicality, safety and cost.[1][2] The word engineer is derived from the Latin root ingenium, meaning "cleverness".[3]
Engineers are grounded in applied sciences, and are distinguished from scientists who perform research and artists who create with a focus on aesthetics.[2] The work of engineers forms the link between scientific discoveries and the applications that meet the needs of society.[1]
Roles and expertise
Design
Hey EVERYONE IN DRAFTING! hi
Engineers develop new technological solutions. During the engineering design process, the responsibilities of the engineer may include defining problems, conducting and narrowing research, analyzing criteria, finding and analyzing solutions, and making decisions. Much of an engineer's time is spent on researching, locating, applying, and transferring information.[4]
Engineers must weigh different design choices on their merits and choose the solution that best matches the requirements. Their crucial and unique task is to identify, understand, and interpret the constraints on a design in order to produce a successful result.
Analysis
Engineers apply techniques of engineering analysis in testing, production, or maintenance. Analytical engineers may supervise production in factories and elsewhere, determine the causes of a process failure, and test output to maintain quality. They also estimate the time and cost required to complete projects. Supervisory engineers are responsible for major components or entire projects. Engineering analysis involves the application of scientific analytic principles and processes to reveal the properties and state of the system, device or mechanism under study. Engineering analysis proceeds by separating the engineering design into the mechanisms of operation or failure, analysing or estimating each component of the operation or failure mechanism in isolation, and re-combining the components. They may analyse risk.[5] [6] [7] [8].
Many engineers use computers to produce and analyze designs, to simulate and test how a machine, structure, or system operates, to generate specifications for parts, to monitor the quality of products, and to control the efficiency of processes.
Specialization
Most engineers specialize.[1] Numerous specialties are recognized by professional societies, and each of the major branches of engineering has numerous subdivisions. Civil engineering, for example, includes structural and transportation engineering, and materials engineering includes ceramic, metallurgical, and polymer engineering. Engineers also may specialize in one industry, such as motor vehicles, or in one type of technology, such as turbines or semiconductor materials.[1]
Ethics
Engineers have obligations to the public, their clients, employers and the profession. Many engineering societies have established codes of practice and codes of ethics to guide members and inform the public at large. Each engineering discipline and professional society maintains a code of ethics, which the members pledge to uphold. Depending on their specializations, engineers may also be governed by specific statute, whistleblowing, product liability laws, and often the principles of business ethics.[9][10][11]
Some graduates of engineering programs in North America may be recognized by the Iron Ring or Engineer's Ring, a ring made of iron or stainless steel that is worn on the little finger of the dominant hand. This tradition began in 1925 in Canada with The Ritual of the Calling of an Engineer, where the ring serves as a symbol and reminder of the engineer's obligations for the engineering profession. In 1972, the practice was adopted by several colleges in the United States including members of the Order of the Engineer.
Education
Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and the physical and life sciences. Many programs also include courses in general engineering. A design course, sometimes accompanied by a computer or laboratory class or both, is part of the curriculum of most programs. Often, general courses not directly related to engineering, such as those in the social sciences or humanities, also are required.
Graduate training is essential for engineering faculty positions and some research and development programs, but is not required for the majority of entry-level engineering jobs. Many experienced engineers obtain graduate degrees in engineering or business administration to learn new technology and broaden their education. Numerous high-level executives in government and industry began their careers as engineers.
Accreditation is the process by which engineering program are evaluated by an external body to determine if applicable standards are met. The Washington Accord serves as an international accreditation agreement for academic engineering degrees, recognizing the substantial equivalency in the standards set by many major national engineering bodies. In the United States, post-secondary degree programs in engineering are accredited by the Accreditation Board for Engineering and Technology. In much of Europe and the Commonwealth professional accreditation is provided by Engineering Institutions, such as the Institution of Civil Engineers from the United Kingdom.
Regulation
In many countries, engineering tasks such as the design of bridges, electric power plants, and chemical plants, must be approved by a licensed engineer. Most commonly titled as Professional Engineer or Chartered Engineer, the status of professional licensing is often indicated with the use of post-nominal letters; PE or P.Eng is common in North America, EUR ING in Europe, while CEng and IEng is used in the United Kingdom and CEng in much of the Commonwealth.
In the United States, licensure is generally attainable through combination of education, pre-examination (Fundamentals of Engineering exam), examination (Professional Engineering Exam)[12], and engineering experience (typically in the area of 5+ years). Each state tests and licenses Professional Engineers. Currently most states do not license by specific engineering discipline, but rather provide generalized licensure, and trust engineers to use professional judgment regarding their individual competencies; this is the favored approach of the professional societies. Despite this, however, at least one of the examinations required by most states is actually focused on a particular discipline; candidates for licensure typically choose the category of examination which comes closest to their respective expertise.
In Canada, the profession in each province is governed by its own engineering association. For instance, in the Province of British Columbia an engineering graduate with 4 or more years of post graduate experience in an engineering-related field, and passing exams in ethics and law will need to be registered by the Association for Professional Engineers and Geoscientists (APEGBC) [13] in order to become a Professional Engineer and be granted the professional designation of P.Eng.
In Continental Europe, Latin America, Turkey, and elsewhere the title is limited by law to people with an engineering degree, and the use of the title by others is illegal. In Italy the title is limited to people who both hold an engineering degree and have passed a professional qualification examination (Esame di Stato). In Portugal, professional engineer titles and accredited engineering degrees are regulated and certified by the Ordem dos Engenheiros. In the Czech Republic the title "engineer" (Ing.) is given to people with a (masters) degree in chemistry, technology or economics for historical and traditional reasons. In Greece the academic title of "Diploma Engineer" is awarded after completion of the five-year engineering study course, and the title of "Certified Engineer" is awarded after completion of the four-year course of engineering studies at a Technological Educational Institute (TEI).
Perception
Engineering is generally a well respected profession. British school children in the 1950s were brought up with stirring tales of 'the Victorian Engineers', chief amongst whom were the Brunels, the Stephensons, Telford and their contemporaries. In Canada, engineering ranks as one of the public's most trusted professions.[14] In India, engineering is one of the most sought after undergraduate courses, inviting thousands of applicants to try their luck in highly competitive entrance examinations.
Sometimes engineering has been seen as a somewhat dry, uninteresting field in popular culture, and has also been thought to be the domain of nerds.[15] For example, the cartoon character Dilbert is an engineer. In science fiction engineers are often portrayed as highly knowledgeable and respectable individuals who understand the overwhelming future technologies often portrayed in the genre. Several Star Trek characters are engineers. One difficulty in increasing public awareness of the profession is that average people, in the typical run of ordinary life, do not ever have any personal dealings with engineers, even though they benefit from their work every day. By contrast, it is common to visit a doctor at least once a year, the chartered accountant at tax time, and, occasionally, even a lawyer.
In companies and other organizations in many English-speaking countries there is a tendency to undervalue people with technical and scientific skills compared to managers. In his book The Mythical Man-Month[16], Fred Brooks Jr says that managers think of senior people as "too valuable" for technical tasks, and that management jobs carry higher prestige. He tells how some laboratories, such as Bell Labs, abolish all job titles to overcome this problem: a professional employee is a "member of the technical staff." IBM maintain a dual ladder of advancement; the corresponding managerial and technical rungs are equivalent. Brooks recommends that structures need to be changed; the boss must give a great deal of attention to keeping his managers and his technical people as interchangeable as their talents allow. In many other countries technical experts are more highly regarded.
References
- ^ a b c d Bureau of Labor Statistics, U.S. Department of Labor (2006). "Engineers". Occupational Outlook Handbook, 2006-07 Edition. Retrieved 2006-09-21.
- ^ a b National Society of Professional Engineers (2006). "Frequently Asked Questions About Engineering". Retrieved 2006-09-21. Science is knowledge based on observed facts and tested truths arranged in an orderly system that can be validated and communicated to other people. Engineering is the creative application of scientific principles used to plan, build, direct, guide, manage, or work on systems to maintain and improve our daily lives.
- ^ Oxford Concise Dictionary, 1995
- ^ A.Eide, R.Jenison, L.Mashaw, L.Northup. Engineering: Fundamentals and Problem Solving. New York City: McGraw-Hill Companies Inc.,2002
- ^ Baecher, G.B., Pate, E.M., and de Neufville, R. (1979) “Risk of dam failure in benefit/cost analysis”, Water Resources Research, 16(3), 449-456.
- ^ Hartford, D.N.D. and Baecher, G.B. (2004) Risk and Uncertainty in Dam Safety. Thomas Telford
- ^ International Commission on Large Dams (ICOLD) (2003) Risk Assessment in Dam Safety Management. ICOLD, Paris
- ^ British Standards Institution (BSI) (1991)BC 5760 Part 5: Reliability of systems equipment and components - Guide to failure modes effects and criticality analysis (FMEA and FMECA).
- ^ American Society of Civil Engineers (2006) [1914]. Code of Ethics. Reston, Virginia, USA: ASCE Press. Retrieved 2006-10-20.
- ^ Institution of Civil Engineers (2004). Royal Charter, By-laws, Regulations and Rules (PDF). Retrieved 2006-10-20.
- ^ National Society of Professional Engineers (2007) [1964]. Code of Ethics (PDF). Alexandria, Virginia, USA: NSPE. Retrieved 2006-10-20.
- ^ [1] NCEES is a national nonprofit organization dedicated to advancing professional licensure for engineers and surveyors.
- ^ APEGBC - Professional Engineers and Geoscientists of BC
- ^ Leger Marketing (2006). "Sponsorship effect seen in survey of most-trusted professions: pollster".
{{cite journal}}
: Cite journal requires|journal=
(help), pg. 2, The occupations most-trusted by Canadians, according to a poll by Leger Marketing... Engineering 88 per cent of respondents... - ^ David Anderegg. Nerds: who they are and why we need more of them. Jeremy P. Tarcher, 2008
- ^ The Mythical Man-Month: Essays on Software Engineering, p119 (see also p242), Frederick P. Brooks, Jr., University of North Carolina at Chapel Hill, 2nd ed. 1995, pub. Addision-Wesley