Jump to content

Unfolded protein response: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Line 44: Line 44:
===Initiating Apoptosis===
===Initiating Apoptosis===


In conditions of prolonged stress, the goal of the UPR changes from being one that promotes cellular survival to one that commits the cell to a pathway of programmed cell death (or apoptosis). Proteins downstream of all 3 UPR receptor pathways have been identified as having pro-apoptotic roles. However, the point at which the ‘apoptotic switch’ is activated has not yet been determined, but it is a logical consideration that this should be beyond a certain time period in which resolution of the stress has not been achieved. The 2 principal UPR receptors involved are Ire1 and PERK. <br />
In conditions of prolonged stress, the goal of the UPR changes from being one that promotes cellular survival to one that commits the cell to a pathway of programmed cell death (apoptosis). Proteins downstream of all 3 UPR receptor pathways have been identified as having pro-apoptotic roles. However, the point at which the ‘apoptotic switch’ is activated has not yet been determined, but it is a logical consideration that this should be beyond a certain time period in which resolution of the stress has not been achieved. The 2 principal UPR receptors involved are Ire1 and PERK. <br />
By binding with the protein TRAF2, Ire1 activates a JNK signaling pathway<sup>14</sup>, at which point human procaspase 4 is believed to cause apoptosis by activating downstream caspases.
By binding with the protein TRAF2, Ire1 activates a JNK signaling pathway<sup>14</sup>, at which point human procaspase 4 is believed to cause apoptosis by activating downstream caspases.
Although PERK is recognised to produce a translational block, certain genes can bypass this block. An important example is that the proapoptotic protein CHOP ([[CCAAT/-enhancer-binding protein homologous protein]]),is upregulated downstream of the bZIP transcription factor ATF4 (activating transcription factor 4) and uniquely responsive to ER stress<sup>15</sup>. CHOP causes downregulation of the anti-apoptotic mitochondrial protein Bcl-2<sup>16</sup>, favouring a pro-apoptotic drive at the mitochondria by proteins that cause mitochondrial damage, cytochrome c release and caspase 3 activation.
Although PERK is recognised to produce a translational block, certain genes can bypass this block. An important example is that the proapoptotic protein CHOP ([[CCAAT/-enhancer-binding protein homologous protein]]),is upregulated downstream of the bZIP transcription factor ATF4 (activating transcription factor 4) and uniquely responsive to ER stress<sup>15</sup>. CHOP causes downregulation of the anti-apoptotic mitochondrial protein Bcl-2<sup>16</sup>, favouring a pro-apoptotic drive at the mitochondria by proteins that cause mitochondrial damage, cytochrome c release and caspase 3 activation.

Revision as of 21:04, 21 November 2010

The unfolded protein response (UPR) is a cellular stress response related to the endoplasmic reticulum. It is a stress response that has been found to be conserved between all mammalian species, as well as yeast and worm organisms. This article focuses on the mammalian response.

The UPR is activated in response to an accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum. In this scenario, the UPR has two primary aims: initially to restore normal function of the cell by halting protein translation and activate the signaling pathways that lead to increasing the production of molecular chaperones involved in protein folding. If these objectives are not achieved within a certain time lapse or the disruption is prolonged, the UPR aims to initiate programmed cell death (apoptosis).

Protein Folding in the Endoplasmic Reticulum

Protein synthesis

The term protein folding incorporates all the processes involved in the production of a protein after the nascent polypeptides have become synthesized by the ribosomes. The proteins destined to be secreted or sorted to other cell organelles carry an N-terminal signal sequence that will interact with a signal recognition particle (SRP). The SRP will lead the whole complex (Ribosome, RNA, polypeptide) to the ER membrane. Once the sequence has “docked”, the protein continues translation, with the resultant strand being fed through the polypeptide translocator directly into the ER. Protein folding commences as soon as the polypeptide enters to the luminal environment, even as translation of the remaining polypeptide continues.

Protein folding & Quality control

Protein folding steps involve a range of enzymes and molecular chaperones to coordinate and regulate reactions, in addition to a range of substrates required in order for the reactions to take place. The most important of these to note are N-linked glycosylation and disulfide bond formation. N-linked glycosylation occurs as soon as the protein sequence passes into the ER through the translocon, where it is glycosylated with a sugar molecule that forms the key ligand for the lectin molecules calreticulin (CRT) and calnexin (CNX)1. Favoured by the highly oxidising environment of the ER, Protein disulfide isomerases facilitate formation of disulfide bonds, which confer structural stability to the protein in order for it to withstand adverse conditions such as extremes of pH and degradative enzymes.

The ER is capable of recognising malfolding proteins without causing disruption to the functioning of the ER. The aforementioned sugar molecule remains the means by which the cell monitors protein folding, as the malfolding protein becomes characteristically devoid of glucose residues, targeting it for identification and re-glycosylation by the enzyme UGGT (UGT-glucose:glycoprotein glucosyltransferase)1. If this fails to restore the normal folding process, exposed hydrophobic residues of the malfolded protein are bound by the protein glucose regulate protein 78 (Grp78), a heat shock protein 70kDa family member2 that prevents the protein from further transit and secretion3.

Where circumstances continue to cause a particular protein to malfold, the protein is recognised as posing a threat to the proper functioning of the ER, as they can aggregate to one another and accumulate. In such circumstances the protein is guided through endoplasmic reticulum-associated degradation (ERAD). The chaperone EDEM guides the retrotranslocation of the malfolded protein back into the cytosol in transient complexes with PDI and Grp784. Here it enters the ubiquitin-proteasome pathway, as it is tagged by multiple ubiquitin molecules, targeting it for degradation by cytosolic proteasomes.

A simplified diagram of the processes involved in protein folding. The polypeptide is translated from its ribosome directly into the ER, where it is glycosylated and guided through modification steps to reach its desired conformation. It is then exocytosed and passes on to the Golgi for final modifications. Where malfolding proteins continually breach quality control, chaperones including Grp78 facilitate its removal from the ER through retrotranslocation, where it is broken down by the ubiquitin-proteasome pathway as part of the ERAD system.

Successful protein folding requires a tightly controlled environment of substrates that include glucose to meet the metabolic energy requirements of the functioning molecular chaperones; calcium that is stored bound to resident molecular chaperones and; redox buffers that maintain the oxidising environment required for disulfide bond formation5.

However where circumstances cause a more global disruption to protein folding that overwhelms the ER’s coping mechanisms, the UPR is activated.

Molecular mechanism involved in the UPR

Initiation of the UPR

The molecular chaperone BiP/Grp78 has a range of functions within the ER. It maintains specific transmembrane receptor proteins involved in initiating of the downstream signalling of the UPR in an inactive state by binding to their luminal domains. An overwhelming load of misfolded proteins requires more of the available BiP/Grp78 to bind to the exposed hydrophobic regions of these proteins, and consequently BiP/Grp78 dissociates from these receptors sites to meet this requirement. Dissociation from the intracellular receptor domains allows them to become active.

Functions of the UPR

The initial phases of UPR activation have two key roles:

Translation Attenuation and Cell Cycle Arrest by the PERK Receptor This occurs within minutes to hours of UPR activation to prevent further translational loading of the ER. PERK (protein kinase RNA-like endoplasmic reticulum kinase) activates itself by oligomerization and autophosphorylation of the free luminal domain. The activated cytosolic domain causes translational attenuation by directly phosphorylating the α subunit of the regulating initiator of the mRNA translation machinery, eIF26. This also produces translational attenuation of the protein machinery involved in running the cell cycle, producing cell cycle arrest in the G1 phase7.

A simplified diagram of the initiation of the UPR by prolonged and overwhelming protein malfolding. Grp78 recruitment to chaperone the malfolded proteins results in Grp78 dissociation from its conformational binding state of the transmembrane receptor proteins PERK, IRE1 and ATF6. Dissociation results in receptor homodimerisation and oligomerisation to an active state. The activated cytosolic domain of PERK phosphorylates the eIF2alpha, inhibiting translation and resulting in cell cycle arrest. The activated cytosolic domain of IRE1 cleaves the 252bp intron from its substrate XBP1, facilitating its translation to form the transcription factor XBP1. Activated ATF6 translocates to the Golgi, cleaved by proteases to form an active 50kDa fragment (ATF6 p50). ATF6 p50 and XBP1 bind ERSE promoters in the nucleus to produce upregulation of the proteins involved in the unfolded protein response.

Increased Production of Proteins Involved in the Functions of the UPR UPR activation also results in upregulation of proteins involved in chaperoning malfolding proteins, protein folding and ERAD, including further production of Grp78. Ultimately this increases the cell’s molecular mechanisms by which it can deal with the malfolded protein load. These receptor proteins have been identified as:
• Inositol-requiring kinase 18, whose free luminal domain activates itself by homodimerisation and transautophosphorylation9. The activated domain is able to activate the transcription factor XBP1 (X-box binding protein) mRNA (the mammalian equivalent of the yeast Hac1 mRNA) by cleavage and removal of a 252bp intron. The activated transcription factor upregulates UPR ‘stress genes’ by directly binding to stress element promoters in the nucleus10.
• ATF6 (activating transcription factor 6) is a basic leucine zipper transcription factor11.Upon Grp78 dissociation the entire 90kDa protein translocates to the Golgi, where it is cleaved by proteases to form an active 50kDa transcription factor12 that translocates to the nucleus. It binds to stress element promoters upstream of genes that are upregulated in the UPR 13.

The aim of these responses is to remove the accumulated protein load whilst preventing any further addition to the stress, so that normal function of the ER can be restored as soon as possible.

Initiating Apoptosis

In conditions of prolonged stress, the goal of the UPR changes from being one that promotes cellular survival to one that commits the cell to a pathway of programmed cell death (apoptosis). Proteins downstream of all 3 UPR receptor pathways have been identified as having pro-apoptotic roles. However, the point at which the ‘apoptotic switch’ is activated has not yet been determined, but it is a logical consideration that this should be beyond a certain time period in which resolution of the stress has not been achieved. The 2 principal UPR receptors involved are Ire1 and PERK.
By binding with the protein TRAF2, Ire1 activates a JNK signaling pathway14, at which point human procaspase 4 is believed to cause apoptosis by activating downstream caspases. Although PERK is recognised to produce a translational block, certain genes can bypass this block. An important example is that the proapoptotic protein CHOP (CCAAT/-enhancer-binding protein homologous protein),is upregulated downstream of the bZIP transcription factor ATF4 (activating transcription factor 4) and uniquely responsive to ER stress15. CHOP causes downregulation of the anti-apoptotic mitochondrial protein Bcl-216, favouring a pro-apoptotic drive at the mitochondria by proteins that cause mitochondrial damage, cytochrome c release and caspase 3 activation.

Chemical inducers of the UPR

UPR inducers most notably include tunicamycin. Others are:

References

Further reading

  1. Blond-Elguindi, S., Cwiria, SE., Dower, WJ., Lipshutz, RJ., Sprang, SR., Sambrook, JF., Gething, MH (1993) Cell 75: 717-728
  2. Brewer, J., Diehl, J. (2000) Proc Natl Acad USA 97 (23): 12625-30
  3. Chen, X., Shen, J., Prywes, R. (2002) J Biol Chem 277 (15): 13045-53
  4. Cox, JS., Shamu, CE., Walter, P. (1993) Cell 73 (6): 1197-1206
  5. Hammond, C., Braakman, I., Helenius, A. 1994 PNAS 91: 913-917
  6. Harding, H. P., Zhang, Y., Ron, D. (1999) Nature 397 271-4
  7. Lee, A-H., Iwakoshi, N., Anderson, K., Glimcher, L. (2003) Proc Natl Acad Sci USA 100 (17) 9946-51
  8. Lee, AS (1987) Trends Biochem Sci 12 20-23
  9. Machamer, CE., Doms, RW., Bole, DG,. Helenius, A., Rose, JK. (1990) J Biol Chem 265 (12) 6879-6883
  10. McCullough, K., Martindale, J., Klotz, L., Aw, T., Holbrook, N (2001) Mol Cell Biol 21: 1249-1259
  11. Molinari, M., Galli, C., Piccaluga, V., Pieren, M., Paganetti, P. (2002) J Cell Biol 158 (2) 247-257
  12. Mori, K., Ogawa, O., Kawahara, T., Yanagi, H., Yura, T. (2000) Proc Natl Acad Sci USA 97 4660-4665
  13. Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H., Ron, D (2000) Science 287 (5453) 664-666
  14. Wang, X-Z., Lawson, B., Brewer, J. W., Zinszner, H., Sanjay, A., Mi, L., Boorstein, R., Kreibich, G., Hendershot, L., Ron., D. (1996) Mol Cell Biol 16 (8) 4273-80
  15. Welihinda, A. A., Kaufman, R. J. (1996) J Biol Chem 271 (30) 18181-7
  16. Yoshida, H., Haze, K., Yanagi, H., Yura, T., Mori, K. (1998) J Biol Chem 273 (50): 33741-9