Jump to content

User:D c weber: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
D c weber (talk | contribs)
No edit summary
D c weber (talk | contribs)
mNo edit summary
Line 8: Line 8:
<br />
<br />
<br />=============================================================================
<br />=============================================================================
<br />div style="text-decoration:blink"><big><big><big><big><big><big><big><font color="red">Below is my scratchpad for editing. </font></big></big></big></big></big></big></big></div><font color="black">
<br />'''Below is my scratchpad for editing''' - ''this is a work in prgress, so please do not discuss this''
- ''this is a work in progress, so please do not discuss this''
<br />================================================================================<br />[[User:D c weber|D c weber]] ([[User talk:D c weber|talk]]) 13:09, 23 December 2010 (UTC)
<br />================================================================================<br />[[User:D c weber|D c weber]] ([[User talk:D c weber|talk]]) 13:09, 23 December 2010 (UTC)
<br />===============================================================================
<br />===============================================================================

Revision as of 14:54, 28 December 2010

Welcome to the user page for editor David Charles Weber
Main interests:

Relativity theory

Vulcanism caused by meteor impacts.


=============================================================================


div style="text-decoration:blink">Below is my scratchpad for editing.

- this is a work in progress, so please do not discuss this
================================================================================
D c weber (talk) 13:09, 23 December 2010 (UTC)
===============================================================================

Recent calculation of the Perihelion precession of Mercury

There have been more recent calculations of the motion of the planet Mercury by Russian scientists. These calculations use the same multi-body calculations used in the past, but also using a six step to calculate the precession of the perihelion of Mercury:

1) differential equations of motion and their solution method. [1][2][3][4][5][6][7][8]

2) developed a computer program (Galactica).[9]

3) derived formulae for geometric transformations.[10]

4) developed a compound model of body rotation (i.e. rotation of spherical masses).[11][12][13][14]

5) calculated the action of compound model of rotating mass body on a satellite.[15]

6) calculated the action of the Solar System on Mercury's orbit.[16]

Table 2 - Sources of the precession of perihelion for Mercury using the Sun's rotation
Amount (arcsec/Julian century) Explaination
Based on Observational Data
-5028.82 [17] Velocity of movement of vernal equinox point relative to motionless space
5603.0 [18] Velocity of perihelion rotation relative to the mobile vernal equinox point with including velocities changes of ecliptic and of Mercury orbit
582.53 [19] Velocity of perihelion rotation relative to motionless space
By results of interaction under the Newton law of gravity. Velocity of rotation of a perihelion relative to motionless space
530 – (table 1 above) Planets and the Sun interact as material points
582[20] Planets interact as material points, and the oblateness and rotation of the Sun is taken into account as compound model
Conclusions
0.53 [21] Discrepancy with just Newtonian Mechanics (calculated difference between Newton theory and actual precession)
42.98 ±0.04 [22][23] General relativity
42.45 Discrepancy with General Relativity (calculated difference between GR theory and actual precession)

'=======================================================================


notes==============================

  1. ^ Melnikov,V.P., Smulsky,J.J., Krotov O.I., Smulsky,L.J. Orbits of The Earth And The Sun And Possible Their Influences On of The Earth Cryosphere (Statement of a Problem And The First Results) // Cryosphere of the Earth. - 2000. - Vol. IV, No. 3, Pp. 3-13. (In Russian).
  2. ^ Melnikov V. P., Smulsky J.J. The Astronomical Factors Of Influence On The Earth's Cryosphere And The Problem Of Their Research // Earth Cryosphere, 2004 Vol. VIII, No. 1. Pp. 3-14. (In Russian).
  3. ^ Smulsky J.J., Optimization of Passive Orbit with the Use of Gravity Maneuver // Cosmic Research, 2008, Vol. 46, No. 5, pp. 456–464. Original Russian Text ©, 2008, published in Kosmicheskie Issledovaniya, 2008, Vol. 46, No. 5, pp. 484–492.
  4. ^ Mel’nikov V.P., Smul’skii I.I., Smul’skii Ya.I., 2008. Compound modeling of Earth rotation and possible implications for interaction of continents // Russian Geology and Geophysics, 49, 851–858.
  5. ^ Grebenikov E.A., Smulsky J.J. Evolution of the Mars Orbit on Time Span in Hundred Millions Years / Reports on Applied Mathematics. Russian Academy of Sciences: A.A. Dorodnicyn Computing Center. Moscow. - 2007. 63 p.(In Russian ).
  6. ^ Melnikov V.P., Smulsky J.J.Astronomical theory of ice ages: New approximations. Solutions and challenges. - Novosibirsk: Academic Publishing House "GEO", 2009. - 84 p. The book in two languages. On the back side in Russian: Mel'nikov V.P., Smul'skiy I.I. Astronomicheskaya teoriya lednikovykh periodov: Novye priblizheniya. Reshennye i nereshennye problemy. - Novosibirsk: Akademicheskoe izdatel'stvo "Geo", 2009. - 98 stranitz.
  7. ^ Smulsky J.J. (book) Numerical modeling of evolution of the satellite of a rotating body / In Col. The Theoretical and Applied tasks of the Nonlinear Analysis. Russian Academy of Sciences: A.A. Dorodnicyn Computing Center. Moscow. - 2008. Pp. 100-117. (In Russian).
  8. ^ Smulsky J.J., Compound model of rotation of the Sun and displacement of Mercury perihelion / The Fundamental and Applied Problems of the Mechanics: Proceeding of the VI All-Russian scientific Conference, devoted 130-th anniversary of Tomsk state university and 40-th anniversary NII of Applied Mathematics and the Mechanics of Tomsk State University. Tomsk, September 30 - October 2, 2008 - Tomsk: University Publishing House. – 2008 - Pp. 433-434
  9. ^ see all 8 references of "1) differential equations"
  10. ^ Grebenikov E.A., Smulsky J.J. Evolution of the Mars Orbit on Time Span in Hundred Millions Years / Reports on Applied Mathematics. Russian Academy of Sciences: A.A. Dorodnicyn Computing Center. Moscow. - 2007. 63 p.(In Russian).
  11. ^ Mel’nikov V.P., Smul’skii I.I., Smul’skii Ya.I., 2008. Compound modeling of Earth rotation and possible implications for interaction of continents // Russian Geology and Geophysics, 49, 851–858.
  12. ^ Melnikov V.P., Smulsky J.J.Astronomical theory of ice ages: New approximations. Solutions and challenges. - Novosibirsk: Academic Publishing House "GEO", 2009. - 84 p. The book in two languages. On the back side in Russian: Mel'nikov V.P., Smul'skiy I.I. Astronomicheskaya teoriya lednikovykh periodov: Novye priblizheniya. Reshennye i nereshennye problemy. - Novosibirsk: Akademicheskoe izdatel'stvo "Geo", 2009. - 98 stranitz
  13. ^ Smulsky J.J. Numerical modeling of evolution of the satellite of a rotating body / In Col. The Theoretical and Applied tasks of the Nonlinear Analysis. Russian Academy of Sciences: A.A. Dorodnicyn Computing Center. Moscow. - 2008. Pp. 100-117. (In Russian).
  14. ^ Smulsky J.J. Compound model of rotation of the Sun and displacement of Mercury perihelion / The Fundamental and Applied Problems of the Mechanics: Proceeding of the VI All-Russian scientific Conference, devoted 130-th anniversary of Tomsk state university and 40-th anniversary NII of Applied Mathematics and the Mechanics of Tomsk State University. Tomsk, September 30 - October 2, 2008 - Tomsk: University Publishing House. – 2008 - Pp. 433-434. (In Russian).
  15. ^ Smulsky J.J. Numerical modeling of evolution of the satellite of a rotating body / In Col. The Theoretical and Applied tasks of the Nonlinear Analysis. Russian Academy of Sciences: A.A. Dorodnicyn Computing Center. Moscow. - 2008. Pp. 100-117. (In Russian).
  16. ^ Smulsky J.J., Compound model of rotation of the Sun and displacement of Mercury perihelion / The Fundamental and Applied Problems of the Mechanics: Proceeding of the VI All-Russian scientific Conference, devoted 130-th anniversary of Tomsk state university and 40-th anniversary NII of Applied Mathematics and the Mechanics of Tomsk State University. Tomsk, September 30 - October 2, 2008 - Tomsk: University Publishing House.
  17. ^ J.L. Simon, P. Bretagnon, J. Chapront, et. al., “Numerical Expression for Precession Formulae and Mean Elements for the Moon and the Planets”, Astron. Astrophys, vol. 282, pp. 663-683 (1994).
  18. ^ J.L. Simon, P. Bretagnon, J. Chapront, et. al., “Numerical Expression for Precession Formulae and Mean Elements for the Moon and the Planets”, Astron. Astrophys, vol. 282, pp. 663-683 (1994).
  19. ^ J.L. Simon, P. Bretagnon, J. Chapront, et. al., “Numerical Expression for Precession Formulae and Mean Elements for the Moon and the Planets”, Astron. Astrophys, vol. 282, pp. 663-683 (1994).
  20. ^ Smulsky J.J., Compound model of rotation of the Sun and displacement of Mercury perihelion / The Fundamental and Applied Problems of the Mechanics: Proceeding of the VI All-Russian scientific Conference, devoted 130-th anniversary of Tomsk state university and 40-th anniversary NII of Applied Mathematics and the Mechanics of Tomsk State University. Tomsk, September 30 - October 2, 2008 - Tomsk: University Publishing House.
  21. ^ Smulsky J.J., Compound model of rotation of the Sun and displacement of Mercury perihelion , cited above
  22. ^ L. Iorio "On the possibility of measuring the solar oblateness and some relativistic effects from planetary ranging" (2004)
  23. ^ Myles Standish, Jet Propulsion Laboratory (1998)