User:Jean-François Monteil de Quimper: Difference between revisions
Jean KemperN (talk | contribs) |
Jean KemperN (talk | contribs) |
||
Line 162: | Line 162: | ||
Logical hexagon |
Logical hexagon |
||
I have created an article for Logical hexagon and refactored a large amount of material contributed by User:Jean KemperNN. The material is wonderful, but I think it is more appropriate in its own article.Greg Bard (talk) 22:59, 14 November 2010 (UTC)([[User:Jean KemperN|Jean KemperN]] ([[User talk:Jean KemperN|talk]]) 14:58, 5 January 2011 (UTC)) |
I have created an article for Logical hexagon and refactored a large amount of material contributed by User:Jean KemperNN. The material is wonderful, but I think it is more appropriate in its own article.Greg Bard (talk) 22:59, 14 November 2010 (UTC)([[User:Jean KemperN|Jean KemperN]] ([[User talk:Jean KemperN|talk]]) 14:58, 5 January 2011 (UTC))([[User:Jean KemperN|Jean KemperN]] ([[User talk:Jean KemperN|talk]]) 17:48, 6 January 2011 (UTC)) |
Revision as of 17:48, 6 January 2011
Charles Stewart: You seem to have knowledge of logic, and I want to encourage you to become an editor in good standing in WP:WPLOG. Please take as much time as you like; editing Wikipedia should not be thought of as an obligation. Creating a Wikipedia account and using that is also a constructive step. — Charles Stewart (talk) 10:44, 16 June 2009 (UTC) [User talk:84.101.36.181|talk]]) 11:53, 16 June 2009 (UTC)I thank you sincerely. JF M (90.60.251.110 (talk) 10:11, 27 February 2010 (UTC))
(Jean KemperN (talk) 09:03, 23 March 2010 (UTC)) (Jean KemperNN (talk) 06:22, 7 December 2010 (UTC))(cf. here)
KEY WORDS: modal logic, strict implication,material implication, logical square, logical hexagon of Robert Blanché (Structures intellectuelles), Aristotle On interpretation( De Interpretatione, Peri Hermeneneias) chapter 7, indeterminate propositions in Peri Hermeneias, second book of the Aristotelian Organon, natural language and underlying logical system
(Jean KemperN (talk) 09:57, 17 March 2010 (UTC))
MOTS CLES: logique modale, implication stricte, implication matérielle, carré logique,hexagone logique de Robert Blanché (Structures intellectuelles),Aristote De l'interprétation(De interpretatione, Peri Hermeneias, On interpretation)chapitre 7, propositions indéterminées dans le Peri Hermeneias, deuxième livre de l'Organon,langue naturelle et système logique sousjacent
(Jean KemperN (talk) 04:11, 13 May 2010 (UTC))
The logical square can and must be replaced by the logical hexagon of Robert Blanché
The articles of Jean-François Monteil on the logical square and the logical hexagon of Robert Blanché can be found on a site of the University of Bordeaux3: http://erssab.u-bordeaux3.fr and on a personal site: http://www.grammar-and-logic.com/index.php. These lines are devoted to Chapter 7 of On Interpretation (or De Interpretatione or Peri Hermeneias) of Aristotle. Jean-François Monteil is a scholar whose speciality is the attentive reading of the chapter 7 of "On Interpretation", second book of Aristotle's Organon. On Interpretation, chapter 7 is,so to speak, a founding text for logic and linguistics. He has devoted to it several papers which appear together, if on Google you type:traductions arabes de interpretatione namely "Du Nouveau sur Aristotle".., "Une exception allemande Paul Gohlke",a paper translated into English with the title "A German exception...". The chapter 7 of the Peri Hermeneias is at the origin of the logical square. Therein Aristotle presents the four propositions that are employed in the syllogistic reasoning: A the universal affirmative Everyman is white, E the universal negative No man is white, I the particular affirmative Some men are white,O the particular negative Some men are not white. In fact, O appears under the form of the sentence Not all men are white whose sense is equivalent to that of Some men are not white These are some of the themes dealt with by Jean-François Monteil in the articles to be found on the two sites, above mentioned:www.grammar-and-logic.com/index.php and http://erssab.u-bordeaux3.fr. 1 Aristotle mutilates a system of propositions belonging to natural language. Together with the four marked propositions given above,the natural system contains two important propositions: Men are white and Men are not white. By their frequency,these unmarked universals are of the utmost importance in natural language. 2 A bad consequence of the mutilation of the natural system by Aristotle is the fact that he confuses the level of natural language and that of what I call the underlying logical system. All men are white (or the equivalent form Everyman is white)is just one of the two natural universals affirmative, the other being Men are white. Jean-François Monteil demonstrates that the sentence All men are white has not exactly the sense of the logical universal affirmative Whatever x may be, if x is man, then x is white. 3 The Aristotelian mutilation is concealed by the quasi universal faulty translation made of two poisoning propositions studied by Aristotle:the so called indeterminate propositions (or unquantified propositions or indeterminates). Although the indeterminates have the meaning of particular propositions for Aristotle, they are translated by those unmarked natural propositions eliminated by Aristotle in Chapter 7 : Men are white Men are not white. How could people think that the major fact to note about the founding text represented by On Interpretation chapter 7 is the fact that Aristotle neglects,removes,eliminates the precious unmarked universals Men are white Men are not white, when they see the unmarked natural universals Men are white Men are not white in translations, where they are used to render- badly indeed- the awful indeterminates of Aristotle? The Aristotelian indeterminates have nothing to do with Men are white Men are not white. The origin of the bad translation of the Aristotelian indeterminates is one of the two Arab translations mentioned by Isidor Pollak in a work published in Leipzig in 1913. 4 Jean-François Monteil intends to draw the attention of scholars to the importance of the logical hexagon which Robert Blanché described in 1966 in STRUCTURES INTELLECTUELLES. With its 6 meanings represented: AEIO+YU, Blanché's hexagon is, so to speak, a more potent figure than the logical square of Apuleius only expressing four meanings AEIO. The logical hexagon makes us understand how the system of natural language and the underlying logical system are distinct and at the same time linked. I invite the reader of these lines to read on the two sites above mentioned two informative papers: paper 1 Paul Gohlke-Two. "A German exception: the translation of On Interpretation by Professor Gohlke. His tenth note on indeterminate propositions."(published in la Revue des Etudes anciennes 2001-Numéro 3-4), paper 2 "To the British Society for the History of Philosophy.From the logical square to the logical hexagon.The logical square of Aristotle or square of Apuleius.The logical hexagon of Robert Blanché in Structures intellectuelles. The triangle of Indian logic mentioned by J.M Bochenski." (Jean KemperN (talk) 08:32, 8 April 2010 (UTC))
On the importance of Aristotle's De Interpretatione, chapter 7
The articles de Jean-François Monteil concerning the logical square and the logical hexagon of Robert Blanché can be found on two sites:a site of the University Michel de Montaigne of Bordeaux or Bordeaux 3 : http://erssab.u-bordeaux3.fr, a personal site:http://www.grammar-and-logic.com/index.php Jean-François Monteil draws the attention to the importance of the chapter 7 of On Interpretation ( or De Interpretatione Peri Hermeneias)in so far as it is at the origin of the logical square. The defects of this founding text necessarily had serious consequences,to say the least, in logic and linguistics. There is a confusion of the level of an underlying logical system and that of the system of natural language. The sense of All men are white, a natural proposition, for instance, is mistakenly identified with that the logical universal affirmative: Whatever x may be , if x is man, then x is white. The potential reader should note that a natural language may express the universal quantity not only by means of All men are white everyman is white but also by such expressions as Men are white Man is white. All men are white is a natural universal affirmative, which is marked due to the use of the mark represented by the quantifying morpheme: all whereas Man is white Men are white are unmarked sentences because devoid of quantifyers like :all,some ,every. These sentences embody what can be called the natural unmarked universal proposition. Both natural universals affirmative have the same referent in that they refer to the same state of things and make known the same fact. The sentences of natural language : Man is white and All men are white both express the content of the logical universal affirmative mentioned above: Whatever x may be, if x is man, then x is white. Now,if they have the same referent, they have not the same meaning in so far as their power of contradiction has not at all the same impact. Man is white contradicts Man is not white, which can be described as a natural universal negative whereas All men are white contradicts Some men are not white, to be described as the natural particular negative. Do Man is not white and Some men are not white have the same content ? Of course not. All men are white and Man is white have the same referent but they have not the same meaning in that they do not exclude the same thing. What is expressed by the logical universal Whatever x may be, if ... is the common referent of two natural universals All men are whiteon the one hand and Man is white on the other, differing in form and meaning. Therefore, it is illegitimate to identify the logical universal with the natural universal that is marked: All men are white since the content of Whatever x may be, if x is man, then x is also apprehended by the other natural universal that is unmarked,namely Man is white or Men are white. I advise the reader to consult my paper Du Nouveau sur Aristote..edited par the journal L'Enseignement philosophique.
Once more, these are some of the themes dealt with by our papers:
1 Aristotle mutilates a system of propositions belonging to natural language. Together with the four marked propositions given above,the natural system contains two important propositions: Men are white and Men are not white. By their frequency,these unmarked universals are of the utmost importance in natural language.
2 A bad consequence of the mutilation of the natural system by Aristotle is the fact that he confuses the level of natural language and that of what I call the underlying logical system. All men are white (or the equivalent form Everyman is white)is just one of the two natural universals affirmative, the other being Men are white. Jean-François Monteil demonstrates that the sentence All men are white has not exactly the sense of the logical universal affirmative Whatever x may be, if x is man, then x is white.
3 The Aristotelian mutilation is concealed by the quasi universal faulty translation made of two poisoning propositions studied by Aristotle:the so called indeterminate propositions (or unquantified propositions or indeterminates). Although the indeterminates have the meaning of particular propositions for Aristotle, they are translated by those unmarked natural propositions eliminated by Aristotle in Chapter 7 : Men are white Men are not white . How could people think that the major fact to note about the founding text represented by On Interpretation chapter 7 is the fact that Aristotle eliminates the precious unmarked universals Men are white Men are not white, when they see the unmarked natural universals Men are white Men are not white in translations, where they are used to render- so badly- the awful indeterminates of Aristotle? The Aristotelian indeterminates have nothing to do with Men are white Men are not white. The origin of the bad translation of the Aristotelian indeterminates is one of the two Arab translations mentioned by Isidor Pollak in a work published in Leipzig in 1913.
4 Jean-François Monteil intends to draw the attention of scholars to the importance of the logical hexagon which Robert Blanché described in 1966 in STRUCTURES INTELLECTUELLES. With its 6 meanings represented: AEIO+YU, Blanché's hexagon is, so to speak, a more potent figure than the logical square of Apuleius only expressing four meanings AEIO. The logical hexagon makes us understand how the system of natural language and the underlying logical system are distinct and at the same time linked. I invite the potential reader to consult DU NOUVEAU SUR ARISTOTE and UNE EXCEPTION ALLEMANDE. (Jean KemperN (talk) 10:08, 8 April 2010 (UTC))
User:Jean KemperN/strict implication
Charles Stewart
You seem to have knowledge of logic, and I want to encourage you to become an editor in good standing in WP:WPLOG. Please take as much time as you like; editing Wikipedia should not be thought of as an obligation. Creating a Wikipedia account and using that is also a constructive step. — Charles Stewart (talk) 10:44, 16 June 2009 (UTC) [User talk:84.101.36.181|talk]]) 11:53, 16 June 2009 (UTC)I thank you sincerely. JF M (84.101.36.15 (talk) 18:09, 14 January 2010 (UTC)) (talk) 00:52, 27 October 2009 (UTC))
Short comment on the definition of strict implication given in the entry
I am not sure at all that the definition of strict implication as a material implication that is acted upon by the necessity operator from modal logic is sufficient and right. I invite the reader of these lines to read what I write in the article devoted by wikipedia to strict conditional and to peruse two papers to be found on the site http://www.grammar-and-logic.com: Traité de logique modale pour grammairiens et Les deux postulats du traité de logique modale. Both papers will be translated into English in a few weeks. L~(p & ~q) or ~ M (p & ~q) cannot by itself symbolize the strict implication of q by p. In effect, ~ M (p & ~q) It is im -possible to have p and ~q together is quite compatible with ~ M (p & q) It is im -possible to have p and q together.If one has ~ Mp , that is to say, if p is im-possible, it is im-possible to have p & q and it is also im-possible to have p & ~q.If ~ M p, then ~ M (p & q) & ~ M (p & ~q). Jean-François Monteil May 09
(Jean KemperN (talk) 08:39, 29 April 2010 (UTC)) Note*Jonathan Bennett, the author of A Philosophical Guide to Conditionals. Oxford Univ. Press told me in an e-mail which, most unfortunately, indeed, I did not save that he appreciated the content of Short comment on the definition of strict implication given in the entry
On strict implication : p ≡ Lq. Note concerning modal logic
Certain linguists, for instance John Lyons, affirm that the formula of strict implication p => q has been found. According to them, p strictly implies q, if one can pose ~ M (p & ~q) It is im -possible to have p and ~q together So it is not. ~ M (p & ~q) cannot by itself symbolize the strict implication of q by p. In effect, ~ M (p & ~q) It is im -possible to have p and ~q together is quite compatible with ~ M (p & q) It is im -possible to have p and q together.If one has ~ Mp , that is to say, if p is im-possible, it is im-possible to have p & q and it is also im-possible to have p & ~q.If ~ M p, then ~ M (p & q) & ~ M (p & ~q).Of itself, the proposition ~ M (p & ~q) cannot represent the strict implication of q by p, cannot represent the causal relation between a cause p and its effect q in so far as the impossibility of p & ~ q may result from the fact that p is im-possible and not from the fact that p is the cause of its effect q. Hence, the necessity of adding the idea that p is possible to the content of ~ M (p & ~q), of adding Mp to ~ M (p & ~q). Hence, our formula of strict implication: ~ M (p & ~q) & Mp, which formula becomes p ≡ Lq p strictly implies q, if p is equivalent to the certainty of q.The developed form of p ≡ Lp is ( p & Lq) w (~ p & M~q ) One of two things: Either we have p and then certainly q or we have not p and in that case it is possible to have ~q. ( p & Lq) w (~p & M~q ), the developed form of p ≡ Lq, contains the two elements of ~ M (p & ~q) & Mp namely the idea that it is im-possible to have p and ~q on the one hand and the idea that p is possible on the other.In John Lyons (page 165, chapitre 6 Logical semantics, Semantics 1,Cambridge University Press, 1977), one can read:“Entailment can be defined in terms of poss and material implication as follows (19)(p => q) ≡ ~ poss (p &~q).That is to say, if p entails q, then it is not logically possible for both p to be true and not-q to be true and conversely…..” If I translate in my own terms, it reads “Strict implication can be defined in terms of possibility M and material implication as follows:19) (p => q) ≡ ~ M (p &~q). That is to say, if the fact p entails the fact q, if the fact p strictly implies the fact q, then it is not logically possible for the two facts p and not-q to coexist in reality and conversely if the facts p and not-q cannot coexist in reality, it means that the fact p entails the fact q, it means that the fact p strictly implies the fact q.” John Lyons is obviously wrong.Indeed, ~ M (p &~q) is a value implied by p => q the strict implication of q by p,but the converse is untrue for ~ M (p &~q) does not imply of itself p => q, does not imply our p ≡ Lq. ~M (p &~q) it is im-possible to have the conjunction of p and non-q is perfectly compatible,I repeat,with ~M (p & q) it is impossible to have the conjunction of p and q. In fact, when you have ~Mp, the impossibility of p, you have necessarily the conjunction of two impossibilities,for you can write
~M p ≡ ~M (p & q) & ~M (p &~q).
(Jean KemperN (talk) 10:08, 8 April 2010 (UTC))
(Jean KemperN (talk) 08:00, 29 April 2010 (UTC))
Les embarrassants paradoxes de l'implication dite matérielle, paradoxes expliquant le désir chez Clarence Irving Lewis de trouver la formule de l'implication dite stricte
Comme le dit l'article, l'implication au sens traditionnel, dite implication matérielle, impose à l'esprit des paradoxes embarrassants: si une proposition est fausse, elle implique n'importe quelle autre proposition, si une proposition est vraie elle est impliquée par n'importe quelle autre proposition. Pour prendre conscience du problème posé par l'implication au sens traditionnel,il n'est pas mauvais de donner un exemple: Il ne fera pas beau cet après-midi. Tel est le fait considéré. Donc la proposition fausse, il fera beau cet après-midi, implique aussi bien la proposition nous irons à Arcachon que la proposition contradictoire de cette dernière nous n'irons pas à Arcachon. Rappelons la lecture qui est faite de l'implication de q par p: si p, alors q et voyons le résultat quand il est avéré qu'il ne fera pas beau. " Il ne fera pas beau. Donc, s'il fait beau, d'une part nous irons à Arcachon et d'autre part nous n'irons pas à Arcachon". Dans ce qui suit, nous expliquerons pourquoi à partir de la définition de l'implication dite matérielle, on peut arriver à un tel énoncé qui met mal à l'aise, c'est le moins qu'on puisse dire.
(Jean KemperN (d) 2 février 2010 à 19:45 (CET)) L'article implication stricte devait être créé sur wikipedia francophone comme l'a été l'article strict conditional sur wikipedia anglophone . Jean-François Monteil entend n'intervenir que dans les pages Discussion. Quelqu'un d'autre que moi a eu l'obligeance de créer la page Article. Il va de soi que ce qui a été écrit tant dans la page Article que dans la page Discussion est juste un début. Liens avec d'autres pages Discussion où l'auteur de ces lignes est intervenu: talk strict implication wiktionary,strict conditional,logical square,semiotic square,de interpretatione, carré sémiotique, carré logique, de l'interprétation, logique modale, implication (logique), morphologie du verbe français. Sur l'implication stricte: p ≡ Lq . Note concernant la logique modale
(Jean KemperN (d) 2 février 2010 à 17:38 (CET)) utilisateur Jean Kemper. Certains linguistes, notamment le John Lyons de Semantics 1 affirment que la formule de l'implication stricte: p => q a été trouvée. Selon eux, p implique strictement q, si on peut poser ~ M (p & ~q) ,autrement dit, Il est im -possible d'avoir ensemble p and ~q. La conception, erronée selon moi, de l'implication stricte se trouve exprimée dans Semantics 1 de John Lyons qui date de 1977 mais se trouve exprimée aussi en 2010 dans l'article Strict conditional de wikipedia et dans l'article strict implication de wiktionary. Dire que p implique strictement q quand il est impossible d'avoir la conjonction de p et de non-q est insuffisant pour définir l'implication stricte de q par p: p => q. En effet, par lui-même, ~ M (p & ~q) ne peut pas symboliser l'implication stricte de q par p: p => q. Pour cette évidente raison que ~ M (p & ~q) Il est im -possible d'avoir ensemble p and ~q est tout à fait compatible avec ~ M (p & q) Il est im -possible d'avoir ensemble p and q. Si l'on a ~ Mp ,c'est-à-dire,si p est im-possible, il est im-possible d'avoir la conjonction de p et de q: p & q et il est également im-possible d'avoir la conjonction de p et non-q: p & ~q. Si ~ M p, alors ~ M (p & q) & ~ M (p & ~q ). Par elle-même, la proposition ~ M (p & ~q) ne peut donc pas représenter l'implication stricte du fait q par le fait p, ne peut donc pas représenter la relation causale entre une cause p et son effet q dans la mesure où l'impossibilité de la conjonction du fait p et du fait non-q: ~ M (p & ~q) peut résulter du fait que p est im-possible et non du fait que p est la cause de son effet q. D'où la nécessité d'ajouter l'idée que p est possible au contenu de ~ M (p & ~q), autrement dit, d'ajouter Mp à ~ M (p & ~q). D'où les deux premiers ingrédients Mp &~ M (p & ~q) de la représentation analytique de l'implication stricte : p => q. Nous verrons plus tard qu'il convient d'ajouter un troisième ingrédient à cette représentation analytique de p => q. Ce troisième élément, c'est ~p.M ≡ M(q), expression disant que le fait non-p est compatible tant avec q qu'avec ~q. L'expression (Mp & ~ M (p & ~q)) & ~p.M ≡ M(q))est, semble-t-il, la représentation analytique définitive de l'implication stricte du fait q par le fait p. Elle comporte trois éléments: Mp, disant que p est possible,~ M (p & ~q))disant que la conjonction p & ~q est im-possible, et enfin ~p.M ≡ M(q)disant,nous le verrons, que le fait non-p est compatible tant avec q qu'avec non-q. Arrêtons-nous sur ce troisième ingrédient:~p.M ≡ M(q)qui sera encore une fois étudié plus loin avec un soin particulier. Quand le fait p implique strictement le fait q, il faut dire nettement ceci: le fait p est compatible uniquement avec le fait q tandis que le fait non-p, lui aussi possible, est compatible aussi bien avec le fait q qu'avec le fait non-q. L'équivalence:p ≡ Lq représente exactement l'implication stricte : p => q avec les trois éléments constitutifs de sa signification, éléments constitutifs que nous avons indiqués ci-dessus. p ≡ Lq dit que le fait p équivaut à la certitude du fait q,certitude du fait q symbolisée par Lq. Voici la forme développée de l'équivalence p ≡ Lp en tant qu'équivalence:(p & Lq) w (~ p & M~q). L'alternative (p & Lq) w (~ p & M~q) est à lire: De deux choses, l'une: ou bien nous avons p et alors nous avons certainement p ou bien nous n'avons pas p et alors il est possible d'avoir non-q. ( p & Lq) w (~p & M~q ), la forme développée de p ≡ Lp premièrement fait apparaître l'élément Mp, à savoir, l'idée que p est possible, deuxièmement fait apparaître l'élément ~ M (p & ~q), à savoir, l'idée que la conjonction de p et de non-q est impossible vu qu'on a Lq, certitude de q, quand on a p. Le fait qu'en troisième lieu, cette forme développée fasse apparaître le troisième élément: ~p.M ≡ M(q) appelle des explications et des démonstrations qui viendront en leur temps. L'implication stricte selon John Lyons
(Jean KemperN (d) 2 février 2010 à 19:50 (CET)) Dans John Lyons (Semantics 1,Cambridge University Press, 1977, page 165, chapitre 6 Logical semantics, page 165), on peut lire: “Entailment can be defined in terms of poss and material implication as follows (19)(p => q) ≡ ~ poss (p &~q).That is to say, if p entails q, then it is not logically possible for both p to be true and not-q to be true and conversely…..” Si je traduis dans mes termes personnels, cela donne toujours en anglais “Strict implication can be defined in terms of possibility M and material implication as follows:19) (p => q) ≡ ~ M (p &~q). That is to say, if the fact p entails the fact q, if the fact p strictly implies the fact q, then it is not logically possible for the two facts p and not-q to coexist in reality and conversely if the facts p and not-q cannot coexist in reality, it means that the fact p entails the fact q, it means that the fact p strictly implies the fact q.” Cela donne en français: “ L'implication stricte peut être définie en termes de possibilité M et d'implication matérielle comme suit: 19) (p => q) ≡ ~ M (p &~q). Autrement dit, si le fait implique strictement le fait q, alors il n'est pas logiquement possible pour les deux faits p et non-q de coexister dans la réalité et réciproquement si les faits p et and non-q ne peuvent pas coexister dans la réalité, cela veut dire que le fait p implique strictement le fait q.” De toute évidence,ces propos de John Lyons sont erronés. Certes, ~ M (p &~q) est une valeur impliquée par p => q , l'implication stricte de q par p mais la réciproque n'existe pas car par lui-même ~ M (p &~q) n'implique pas p => q, n'implique pas notre p ≡ Lq. Encore une fois, ~M (p &~q) il est im-possible d'avoir la conjonction de p et de non-q est parfaitement compatible avec ~M (p & q) il est im-possible d'avoir la conjonction de p et de q. De toute évidence, quand vous avez ~Mp, l'impossibilité de p, vous avez nécessairement la conjonction des deux impossibilités qui viennent d'être évoquées. Vous pouvez écrire l'équivalence: ~M p ≡ ~M (p & q) & ~M (p &~q).
(Jean KemperN (talk) 08:13, 29 April 2010 (UTC))
A precious quotation
Implication: strict or material? Main article: Paradox of entailment
It is obvious that the notion of implication formalised in classical logic does not comfortably translate into natural language by means of "if… then…", due to a number of problems called the paradoxes of material implication.
The first class of paradoxes involves counterfactuals, such as "If the moon is made of green cheese, then 2+2=5", which are puzzling because natural language does not support the principle of explosion. Eliminating this class of paradoxes was the reason for C. I. Lewis's formulation of strict implication, which eventually led to more radically revisionist logics such as relevance logic.
The second class of paradoxes involves redundant premises, falsely suggesting that we know the succedent because of the antecedent: thus "if that man gets elected, granny will die" is materially true if granny happens to be in the last stages of a terminal illness, regardless of the man's election prospects. Such sentences violate the Gricean maxim of relevance, and can be modelled by logics that reject the principle of monotonicity of entailment, such as relevance logic.
Logic From Wikipedia, the free encyclopedia
(Jean KemperN (talk) 19:04, 29 April 2010 (UTC))
Jean-François Monteil and Theory and History of Ontology by Raul Corazzon. Semantics and Philosophy of Language in Aristotle's De Interpretatione Annotated bibliography on Aristotle's De Interpretatione
e-mail: raul.corazzon@formalontology.it
(62)Monteil Jean-François, "De la traduction en arabe et en français d'un texte d'Aristote: le chapitre VII du Peri Hermeneias," Bulletin d'Etudes Orientales 48: 57-76 (1996). "Les propositions indéterminées du chapitre VII de Peri Hermeneias sont des particulières traduites par des universelles fausses. La cause de cette bizarrerie est dans le maître, et non dans les traducteurs. Aristote mutile un système naturel de propositions dont l'intégrité est restaurée par l'hexagone de Robert Blanché. Celui-ci ajoute deux postes au carré: Y (quantité partielle) et U (exclusion de la quantité partielle). Le carré représente A (totalité) et E (quantité zéro), mais pas avec la tierce quantité Y. Or, la quantité partielle (Y) est essentielle: c'est celle des particulières naturelles contenant notoirement plus d'information que les particulières logiques. U (exclusion de la quantité partielle) est le signifié commun aux deux phrases qu'Aristote élimine du système naturel." (63) Monteil Jean-François, "Une exception allemande: la traduction du De Interpretatione par le Professeur Gohlke: la note 10 sur les indéterminées d'Aristote," Revues de Études Anciennes 103: 409-427 (2001). "Professor Paul Gohlke (*) is the only translator to fully respect Aristotle's own conception of indeterminates. He was the first to perceive the linguistic problem raised by the indeterminate negative. All the other translators of De Interpretatione mistakenly render Aristotle's indeterminates, which are particulars, as universals. The origin of this mistake lies in one of the two Arabic translations."(*) Kategorien und Hermeneutik, Paderborn, Ferdinand Schöningh, 1951 (64)Monteil Jean-François, "La transmission d'Aristote par les Arabes à la chrétienté occidentale: une trouvaille relative au De Interpretatione," Revista Española de Filosofia Medieval 11: 181-195 (2004)."Some men are not white and Some men are white versus No man is white are illegitimately identified to the two pairs of logical contradictories constituting the logical square: A versus O and I versus E, respectively. Thus, the level of natural language and that of logic are confused. The unfortunate Aristotelian alteration is concealed by the translation of propositions known as indeterminates. To translate these, which, semantically, are particulars, all scholars, except for Paul Gohlke, employ the two natural universals excluded by the Master! The work of Isador Pollak, published in Leipzig in 1913, [Die Hermeneutik des. Aristoteles in der Arabischen übersetzung des Ishiik Ibn Honain] reveals the origin of this nearly universal translation mistake: the Arabic version upon which Al-Farabi unfortunately bases his comment. In adding the vertices Y and U to the four ones of the square, the logical hexagon of Robert Blanché (*) allows for the understanding of the manner in which the logical system and the natural system are linked."(*) Structures Intellectuelles. Essai sur l'organisation systématique des concepts - Paris, Vrin, 1966; Raison et Discours. Défense de la logique réflexive - Paris, Vrin, 1967(65)Monteil Jean-François, "Isidor Pollak et les deux traductions arabes différentes du De interpretatione d'Aristote," Revue d'Études Anciennes 107: 29-46 (2005)."Dans le chapitre VII du De interpretatione, Aristote mutile un système naturel de trois couples de contradictions naturelles. Il évince le couple où deux universelles naturelles "Les hommes sont blancs", "Les hommes ne sont pas blancs" s'opposent contradictoirement. Conséquence grave: les deux couples de contradictoires naturelles, qu'Aristote considère exclusivement, sont identifiés illégitimement aux deux couples de contradictoires logiques constituant le carré logique. Cette mutilation est dissimulée par la traduction des propositions dites "indéterminées". L'ouvrage d'Isidor Pollak, publié à Leipzig en 1913 (Die Hermeneutik des Aristoteles in der arabischen Übersetzung des Ishak Ibn Honain, Abhandlungen für die Kunde des Morgenlandes, 13,1), révèle l'origine de cette faute de traduction quasi universelle: la version arabe sur laquelle al-Farabi fonde son commentaire." (Jean KemperN 04:23, 16 May 2010 (UTC)) (Jean KemperN (talk) 10:02, 22 May 2010 (UTC)) (Jean KemperN (talk) 11:01, 27 May 2010 (UTC))+ Témoignage du grand Jacques Brunschwig Voici …un essai de bibliographie sélective que j’ai préparée pour ceux d’entre vous qui se sont intéressés au fameux PASTOUT. Je remercie Jean-François Monteil, dont le travail exemplaire m’en a fourni les éléments.
(Jean KemperN (talk) 16:48, 10 July 2010 (UTC)) (Jean KemperN (talk) 12:31, 27 May 2010 (UTC))
Témoignage du grand Jacques Brunschwig Voici …un essai de bibliographie sélective que j’ai préparée pour ceux d’entre vous qui se sont intéressés au fameux PASTOUT. Je remercie Jean-François Monteil, dont le travail exemplaire m’en a fourni les éléments.
BIBLIOGRAPHIE SÉLECTIVE -POLLAK (I .), Die Hermeneutik des Aristoteles in der arabischen Übersetzung (...), Abhandlungen für die Kunde des Morgenlandes, XIII, Leipzig, 1913. [où le commencement touche à sa fin]. -BLANCHÉ (R.), Introduction à la logique contemporaine, 1957; Structures intellectuelles, 1966; La logique et son histoire, d'Aristote à Russell, 1970. -Brunschwig (J)., La proposition particulière et les preuves de non-concluance chez Aristote. Cahiers pour l'Analyse, n° 10, hiver 1969*. Traduction espagnole et commentaires par Lucia AMORUSO, chercheuse à l'Université de Rosario (Argentine), in progress, 2009. John LYONS, /SEMANTICS I, /Cambridge, 1977 -Brunschwig (J.) Études sur les philosophies hellénistiques (consultées par Mohamed DJEDIDI, enseignant de philosophie à l'Université de Constantine, Algérie). Recueil d'articles déjà publiés, 1995. -Jean-François MONTEIL, Maître de conférences de logique et de linguistique, DE LA TRADUCTION EN ARABE ET EN FRANçAIS D'UN TEXTE D'ARISTOTE: LE CHAPITRE VII DU /PERI HERMENEIAS, / Bulletin d'Études Orientales, 1996, Institut français d'Études Arabes de Damas. -Jean-François MONTEIL, UNE EXCEPTION ALLEMANDE: LA TRADUCTION DU /DE INTERPRETATIONE /PAR LE PROFESSEUR GOHLKE. LA NOTE 10 SUR LES INDÉTERMINÉES D'ARISTOTE, Revue des Études Anciennes, 2001. -Jean-François MONTEIL, DE LA TRADUCTION EN HÉBREU D'UN TEXTE ARABE DE MAÎMONIDE: LE CHAPITRE II DU MAQALA FI SINA AT AL MANTIQ OU TRAITÉ DE LOGIQUE, en français dans les Cahiers de Tunisie -Jean-François MONTEIL, ISIDOR POLLAK ET LES DEUX TRADUCTIONS ARABES DIFFÉRENTES DU /DE INTERPRETATIONE D'ARISTOTE, /Revue des Études Anciennes, 2005. [un "retour" fulgurant, après tant d'années, et quelles années ? ] -Guy LE GAUFEY, LE PASTOUT DE LACAN : CONSISTANCE LOGIQUE, CONSÉQUENCES CLINIQUES, Paris, EPEL., 2006. (86.201.136.236 (talk) 09:58, 27 May 2010 (UTC))
(Jean KemperN (talk) 17:07, 9 July 2010 (UTC))
Note about On interpretation translated by Edghill and published by Kessinger Publishing,(2004)
References from web pages
On Interpretation by Aristotle Translated by EM Edghill. Text-only version at Eserver eserver.org/philosophy/aristotle/on-interpretation.txt
Aristotle - On Interpretation You can download Netscape 2.0 for free for your computer. Go to On Interpretation. On Interpretation. by Aristotle translated by em Edghill ... libertyonline.hypermall.com/Aristotle/Logic/On-Interpretation.html Plus
On Interpretation / Aristotle 350 BC ON INTERPRETATION by Aristotle translated by em Edghill 1 First we must define the terms 'noun' and 'verb', then the terms 'denial' and 'affirmation' ... infomotions.com/etexts/philosophy/400BC-301BC/aristotle-on-84.htm
On Interpretation, or “De interpretatione” (work by Aristotle ... discussed in biography, history of logic, theory of language www.britannica.com/eb/topic-428564/On-Interpretation
Aristotle's De Interpretatione (On Interpretation) Aristotle’s works on logic are collected in the Organon, which includes the Categories, On Interpretation, Prior Analytics, Posterior Analytics, Topics, ... www.angelfire.com/md2/timewarp/aristotle.html
Aristotle - The Organon ON INTERPRETATION 1 13 Possibility and ... ON INTERPRETATION Book 1 Part 13. Possibility and contingency. 1. Logical sequences follow in due course when we have arranged the propositions thus. ... www.rbjones.com/rbjpub/philos/classics/aristotl/o2113c.htm
Aristotle: On Interpretation by Cajetan, St. Thomas, Jean T ... Book details. Aristotle: On Interpretation. Aristotle: On Interpretation ... Read the complete book Aristotle: On Interpretation by becoming a questia.com ... www.questia.com/library/book/aristotle-on-interpretation-by-cajetan-st-thomas-jean-t-oesterle.jsp
ARISTOTLE - On Interpretation Written 350 bc E - FULL TEXT - In ... On Interpretation 350 bc E. In Two Webpage Parts WEBPAGE ONE. Translated by em Edghill. PART ONE Part 1 First we must define the terms 'noun' and 'verb', ... evans-experientialism.freewebspace.com/aristotle_interpretation01.htm
A German exception: the translation of On Interpretation by Professor Gohlke. His tenth note on indeterminate propositions. Article of Jean-François Monteil published in La Revue des études anciennes, 2001, Numéro 3-4
The seventh chapter of Aristotle’s On Interpretation is a text of exceptional importance for it is at the origin of the logical square. erssab.u-bordeaux3.fr/IMG/doc/Gohlke_en_anglais.doc
(Jean KemperN (talk) 23:16, 9 July 2010 (UTC))
Kessinger Publishing, l'éditeur qui, en 2004, publia la traduction par Edghill du De Interpretatione (en anglais On interpretation) constate donc que parmi les 10 articles anglophones les plus consultés sur la toile concernant le De interpretatione d'Aristote se trouve mon papier A German exception: the translation of On Interpretation by Professor Gohlke. His tenth note on indeterminate propositions publié par la Revue des Etudes anciennes en 2001.
On Interpretation, by Aristotle; translated by em Edghill
On Interpretation. 1. First we must define the terms ‘noun’ and ‘verb’, then the terms ‘denial’ and ‘affirmation’, then ‘proposition’ and ‘sentence.’ ...
ebooks.adelaide.edu.au/a/aristotle/interpretation/
(Jean KemperN (talk) 09:40, 10 July 2010 (UTC))
(Jean KemperN (talk) 04:47, 28 December 2010 (UTC))
Greg Bard
(Jean KemperNN (talk) 23:25, 22 December 2010 (UTC)) Logical hexagon
I have created an article for Logical hexagon and refactored a large amount of material contributed by User:Jean KemperNN. The material is wonderful, but I think it is more appropriate in its own article.Greg Bard (talk) 22:59, 14 November 2010 (UTC)(Jean KemperN (talk) 14:58, 5 January 2011 (UTC))(Jean KemperN (talk) 17:48, 6 January 2011 (UTC))