Jump to content

Granular material: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Yobot (talk | contribs)
m WP:CHECKWIKI error fixes + general fixes, References after punctuation per WP:REFPUNC and WP:PAIC using AWB (7510)
Line 70: Line 70:


* Mester, L., [http://www.granularmaterials.com/ The new physical-mechanical theory of granular materials]. 2009, Homonnai, ISBN 96383-43-87
* Mester, L., [http://www.granularmaterials.com/ The new physical-mechanical theory of granular materials]. 2009, Homonnai, ISBN 96383-43-87

* Lorenzo Pareschi, Giovanni Russo and Giuseppe Toscani, [https://www.novapublishers.com/catalog/product_info.php?products_id=3671&osCsid=f7e97c7286d9848f1a8f5a2e7bec4c38 Modelling and Numerics of Kinetic Dissipative Systems], Nova Science Publishers, New York, 2006.


==See also==
==See also==

Revision as of 08:05, 14 January 2011

A granular material is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the particles interact (the most common example would be friction when grains collide).[1] The constituents that compose granular material must be large enough such that they are not subject to thermal motion fluctuations. Thus, the lower size limit for grains in granular material is about 1 µm. On the upper size limit, the physics of granular materials may be applied to ice floes where the individual grains are icebergs and to asteroid belts of the solar system with individual grains being asteroids.

Some examples of granular materials are nuts, coal, sand, rice, coffee, corn flakes, fertilizer, and ball bearings. Powders are a special class of granular material due to their small particle size, which makes them more cohesive and more easily suspended in a gas. Granular materials are commercially important in applications as diverse as pharmaceutical industry, agriculture, and energy production. Research into granular materials is thus directly applicable and goes back at least to Charles-Augustin de Coulomb, whose law of friction was originally stated for granular materials.[2]

The soldier/physicist Brigadier Ralph Alger Bagnold was an early pioneer of the physics of granular matter and whose book "The Physics of Blown Sand and Desert Dunes"[3] remains an important reference to this day.

According to material scientist Patrick Richard, "Granular materials are ubiquitous in nature and are the second-most manipulated material in industry (the first one is water)".[4]

In some sense, granular materials do not constitute a single phase of matter but have characteristics reminiscent of solids, liquids, or gases depending on the average energy per grain. However in each of these states granular materials also exhibit properties which are unique.

Granular materials also exhibit a wide range of pattern forming behaviors when excited (e.g. vibrated or allowed to flow). As such granular materials under excitation can be thought of as an example of a complex system.

Granular Solids

When the average energy of the individual grains is low and the grains are fairly stationary relative to each other, the granular material acts like a solid. In general stress in a granular solid is not distributed uniformly but is conducted away along so-called force chains which are networks of grains resting on one another. between these chains are regions of low stress whose grains are shielded for the effects of the grains above by vaulting and arching.

Granular Liquids

When the granular matter is driven and energy is fed into the system (such as by shaking) such that the grains are not in constant contact with each other, the granular material is said to fluidize and enter a liquid-like state. When freely flowing, granular materials have flow characteristics that roughly resemble those of ordinary Newtonian fluids. However, granular materials dissipate energy quickly, so techniques of statistical mechanics that assume conservation of energy are of limited use. Bulk flow characteristics of granular materials do differ from those of homogeneous fluids in several important ways[5]:

  • Shearing or shaking a granular material may result in its becoming inhomogeneous in space and time (see Brazil nut effect).
  • Granular materials tend to clog when forced through a constriction (as in a salt cellar)
  • A compacted granular material must expand (or dilate) before it can deform (A process known as dilatency).
  • Turbulence is almost impossible to achieve in granular materials
  • Granular materials can support (small) shear stresses indefinitely
  • Granular materials are often inhomogeneous and anisotropic
  • Granular materials exhibit avalanches.[6] Avalanching sand is a paradigm example of the process of Self-organized criticality.

Granular Gases

If the granular material is driven harder such that contacts between the grains become highly infrequent, the material enters a gaseous state. Correspondingly, one can define a granular temperature equal to the root mean square of grain velocity fluctuations that is analogous to thermodynamic temperature. Unlike conventional gases granular materials will tend to cluster and clump due to the dissipative nature of the collisions between grains. This clustering has some interesting consequences. For example, if a partially partitioned box of granular materials is vigorously shaken then grains will over time tend to collect in one of the partitions rather than spread evenly into both partitions as would happen in a conventional gas. This effect, known as the granular Maxwell's Demon, does not violate any thermodynamics principles since energy is constantly being lost from the system in the process.

Jamming transition

Granular systems are known to exhibit jamming and undergo a jamming transition which is thought of a thermodynamic phase transition to a jammed state.[7]

Pattern formation

Excited granular matter is a rich pattern-forming system. Some of the pattern-forming behaviours seen in granular materials are:

  • The un-mixing or segregation of unlike grains under vibration and flow. An example of this is the so-called Brazil nut effect where Brazil nuts rise to the top of a packet of mixed nuts when shaken.The cause of this effect is that when shaken, granular (and some other) materials move in a circular pattern. some larger materials (Brazil nuts) get stuck while going down the circle and therefore stay on the top.
  • The formation of surface patterns in vibrated granular layers. These patterns include but are not limited to stripes, squares and hexagons. These patterns are thought to be composed of fundamental exitations of the surface known as oscillons.
  • The formation of sand ripples, dunes, and sandsheets

Acoustic effects

Some beach sands such as those of the aptly named squeaky beach exhibit squeaking when walked upon. Some desert dunes are known to exhibit booming during avalanching or when their surface is otherwise disturbed. Granular materials discharged from silos produce loud acoustic emissions in a process known as silo honking.

Granulation

Granulation is the act or process in which primary powder particles are made to adhere to form larger, multiparticle entities called granules.

References

  1. ^ Duran, J., Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials (translated by A. Reisinger). November 1999, Springer-Verlag New York, Inc., New York, ISBN 0-387-98656-1.
  2. ^ Rodhes, M (editor),Principles of powder technology, John Wiley & Sons, 1997 ISBN 0-471-92422-9
  3. ^ Bagnold, R.A. 1941. The physics of blown sand and desert dunes. London: Methuen,
  4. ^ Richard, P., Slow relaxation and compaction of granular systems. Nature Materials 4, 121–128 (2005) doi:10.1038/nmat1300
  5. ^ Fayed, M.E., Otten L. (editor), Handbook of powder science & technology, second edition, Chapman & Hall, ISBN 0-412-99621-9
  6. ^ Pudasaini, Shiva P., Hutter, Kolumban, Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches. Springer, Berlin, New York, 2007, ISBN 3-540-32686-3
  7. ^ Haye Hinrichsen, Dietrich E. Wolf (eds), The Physics of Granular Media. 2004, Wiley-VCH Verlag GmbH & Co. ISBN 978-3-527-60362-6
  • Lu, Kevin (November 2007). "Shear-weakening of the transitional regime for granular flow". J. Fluid Mech. 587: 347–372. doi:10.1017/S0022112007007331. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)

See also