Complex number: Difference between revisions
m →Complex analysis: Big values? |
mNo edit summary |
||
Line 484: | Line 484: | ||
[[bn:জটিল সংখ্যা]] |
[[bn:জটিল সংখ্যা]] |
||
[[zh-min-nan:Ho̍k-cha̍p-sò͘]] |
[[zh-min-nan:Ho̍k-cha̍p-sò͘]] |
||
[[be:Камплексны лік]] |
|||
[[be-x-old:Камплексны лік]] |
[[be-x-old:Камплексны лік]] |
||
[[bs:Kompleksan broj]] |
[[bs:Kompleksan broj]] |
Revision as of 11:49, 5 February 2011
A complex number is a number consisting of a real and imaginary part. It can be written in the form a + bi, where a and b are real numbers, and i is the standard imaginary unit with the property i 2 = −1.[1] The complex numbers contain the ordinary real numbers, but extend them by adding in extra numbers and correspondingly expanding the understanding of addition and multiplication.
Complex numbers were first conceived and defined by the Italian mathematician Gerolamo Cardano, who called them "fictitious", during his attempts to find solutions to cubic equations.[2] The solution of a general cubic equation in radicals (without trigonometric functions) may require intermediate calculations containing the square roots of negative numbers, even when the final solutions are real numbers, a situation known as casus irreducibilis. This ultimately led to the fundamental theorem of algebra, which shows that with complex numbers, a solution exists to every polynomial equation of degree one or higher. Complex numbers thus form an algebraically closed field, where any polynomial equation has a root.
The rules for addition, subtraction, multiplication, and division of complex numbers were developed by the Italian mathematician Rafael Bombelli.[3] A more abstract formalism for the complex numbers was further developed by the Irish mathematician William Rowan Hamilton, who extended this abstraction to the theory of quaternions.
Complex numbers are used in a number of fields, including: engineering, electromagnetism, quantum physics, applied mathematics, and chaos theory. When the underlying field of numbers for a mathematical construct is the field of complex numbers, the name usually reflects that fact. Examples are complex analysis, complex matrix, complex polynomial, and complex Lie algebra.
Complex numbers are plotted on the complex plane, on which the real part is on the horizontal axis, and the imaginary part on the vertical axis.
Introduction and definition
Complex numbers have been introduced to allow for solutions of certain equations that have no real solution: the equation
has no real solution x, since the square of x is 0 or positive, so x2 + 1 cannot be zero. Complex numbers are a solution to this dilemma. The idea is to enhance the real numbers by adding a number i whose square is −1, so that x = i and x = -i are the two solutions to the preceding equation.
Definition
A complex number is an expression of the form
Here a and b are real numbers, and i is a mathematical symbol which is called imaginary unit. For example, -3.5 + 2i is a complex number.
The real number a of the complex number z = a + bi is called the real part of z and the real number b is the imaginary part.[4] They are denoted Re(z) or ℜ(z) and Im(z) or ℑ(z), respectively. For example,
Some authors write a+ib instead of a+bi. In some disciplines (in particular, electrical engineering, where i is a symbol for current), the imaginary unit i is instead written as j, so complex numbers are written as a + bj or a + jb.
A real number is thus a special case of a complex number: every real number a can be regarded as a complex number with an imaginary part of zero, that is to say, a + 0i. Complex numbers whose real part is zero, that is to say, those of the form 0 + bi, are called imaginary numbers. It is common to write a for a + 0i and bi for 0 + bi. Moreover, when b is negative, it is common to write a − (−b)i instead of a + bi, for example 3 − 4i instead of 3 + (−4)i.
The set of all complex numbers is denoted by C or .
The complex plane
A complex number can be viewed as a point or position vector in a two-dimensional Cartesian coordinate system called the complex plane or Argand diagram (see Pedoe 1988 and Solomentsev 2001), named after Jean-Robert Argand. The numbers are conventionally plotted using the real part as the horizontal component, and imaginary part as vertical (see Figure 1). These two values used to identify a given complex number are therefore called its Cartesian-, rectangular-, or algebraic form.
Elementary operations
Addition and subtraction
Complex numbers are added by adding the real and imaginary parts of the summands. That is to say:
Similarly, subtraction is defined by
Using the visualization of complex numbers in the complex plane, the addition has the following geometric interpretation: the sum of two complex numbers A and B, interpreted as points of the complex plane, is the point X obtained by building a parallelogram three of whose vertices are 0, A and B. Equivalently, X is the point such that the triangles with vertices 0, A, B, and X, B, A, are congruent.
Multiplication and division
The multiplication of two complex numbers is defined by the following formula:
In particular, the square of the imaginary unit is −1:
The preceding definition of multiplication of general complex numbers is the natural way of extending this fundamental property of the imaginary unit. Indeed, treating i as a variable, the formula follows from this
- (distributive law)
- (commutative law of addition—the order of the summands can be changed)
- (commutative law of multiplication—the order of the factors can be changed
- (fundamental property of the imaginary unit).
The division of two complex numbers is defined by the following formula:
The real and imaginary part (c and d, respectively) of the denominator must not both be zero for the division to be defined. Division is defined in this way in order because the product of the right hand expression with c + di (using the previous formula for multiplication) is a + bi. Thus, dividing a + bi by c + di and then multiplying it with c + di again gives back a + bi, as is familiar from real or rational numbers.
Square root
The square roots of a + bi (with b ≠ 0) are , where
and
This can be seen by squaring to obtain a + bi.[5][6] Here is called the modulus of a + bi, and the square root with non-negative real part is called the principal square root.
Conjugation
The complex conjugate of the complex number z = x + yi is defined to be x − yi. It is denoted or . Geometrically, is the "reflection" of z about the real axis. In particular, conjugating twice gives the original complex number: .
The real and imaginary parts of a complex number can be extracted using the conjugate:
Moreover, a complex number is real if and only if it equals its conjugate.
Conjugation distributes over the standard arithmetic operations:
The reciprocal of a nonzero complex number z = x + yi is given by
This formula can be used to compute the multiplicative inverse of a complex number if it is given in rectangular coordinates. Inversive geometry, a branch of geometry studying more general reflections than ones about a line, can be expressed in terms of complex numbers, too.
Polar form
Absolute value and argument
Another way of encoding points in the complex plane than using the x- and y-coordinates is to use the distance of a point P to O, the point whose coordinates are (0, 0) (origin), and the angle of the line through P and O. This idea leads to the polar form of complex numbers.
The absolute value (or modulus or magnitude) of a complex number z = x+yi is
If z is a real number (i.e., y = 0), then r = |x|. In general, by Pythagoras' theorem, r is the distance of the point P representing the complex number z to the origin.
The argument or phase of z is the angle to the real axis, and is written as . As with the modulus, the argument can be found from the rectangular form :[7]
The value of φ can change by any multiple of 2π and still give the same angle (note that radians are being used). Hence, the arg function is sometimes considered as multivalued. Normally, as given above, the principal value in the interval is chosen. Values in the range are obtained by adding if the value is negative. The polar angle of the origin is undefined but the value 0 is commonly used.
Together, r and φ give another way of representing complex numbers, the polar form, as the combination of modulus and argument fully specify the position of a point on the plane. Recovering the original rectangular co-ordinates from the polar form is done by the formula called trigonometric form
Using Euler's formula this can be written as
Using the cis function, this is sometimes abbreviated to
In angle notation, often used in electronics to represent a phasor with amplitude r and phase φ it is written as[8]
Multiplication, division and exponentiation in polar form
The relevance of representing complex numbers in polar form stems from the fact that the formulas for multiplication, division and exponentiation are simpler than the ones using Cartesian coordinates. Given two complex numbers z1 = r1(cos φ1 + isin φ1) and z2 =r2(cos φ2 + isin φ2) the formula for multiplication is
In other words, the absolute values are multiplied and the arguments are added to yield the polar form of the product. For example, multiplying by i corresponds to a quarter-rotation counter-clockwise, which gives back i 2 = −1. The picture at the right illustrates the multiplication of
Since the real and imaginary part of 5+5i are equal, the argument of that number is 45 degrees, or π/4 (in radian). On the other hand, it is also the sum of the angles at the origin of the red and blue triangle are arctan(1/3) and arctan(1/2), respectively. Thus, the formula
holds. As the arctan function can be approximated highly efficiently, formulas like this—known as Machin-like formulas—are used for high-precision approximations of π.
Similarly, division is given by
This also implies de Moivre's formula for exponentiation of complex numbers with integer exponents:
The n-th roots of z are given by
for any integer k satisfying 0 ≤ k ≤ n − 1. Here is the usual (positive) nth root of the positive real number r. While the nth root of a positive real number r is chosen to be the positive real number c satisfying cn = x there is no natural way of distinguishing one particular complex nth root of a complex number. Therefore, the nth root of z is considered as a multivalued function (in z), as opposed to a usual function f, for which f(z) is a uniquely defined number. Formulas such as
(which holds for positive real numbers), do in general not hold for complex numbers.
Properties
Field structure
The set C of complex numbers is a field. Briefly, this means that the following facts hold: first, any two complex numbers can be added and multiplied to yield another complex number. Second, for any complex number a, its negative −a is also a complex number and third every nonzero complex number has a reciprocal complex number. Moreover, these operations satisfy a number of laws, for example the law of commutativity of addition and multiplication for any two complex numbers z1 and z2:
These two laws and the other requirements on a field can be proven by the formulas given above, using that similar formulas hold for real numbers.
Unlike the reals, C is not an ordered field, that is to say, it is not possible to define a relation z1 < z2 that is compatible with the addition and multiplication. In fact, in any ordered field, the square of any element is necessarily positive, so i2 = −1 precludes the existence of an ordering on C.
Solutions of polynomial equations
Given any complex numbers (called coefficients) a0, ..., an, the equation
has at least one complex solution z, provided that at least one of the higher coefficients, a1, ..., an, is nonzero. This is the statement of the fundamental theorem of algebra. Because of this fact, C is called an algebraically closed field. This property does not hold for the fields Q (the polynomial x2 − 2 does not have a rational root, since √2 is not a rational number) or R (the polynomial x2 + a does not have a real solution for a > 0, since the square of x is positive for any real number x).
There are various proofs of this theorem, either by analytic methods such as Liouville's theorem, or topological ones such as the winding number, or a proof combining Galois theory and the fact that any real polynomial of odd degree has at least one root.
Because of this fact, theorems that hold for any algebraically closed field, apply to C. For example, any complex matrix has at least one (complex) eigenvalue.
Algebraic characterization
The field C has the following three properties: first, it has characteristic 0. This means that 1 + 1 + ... + 1 ≠ 0 for any number of summands (all of which equal one). Second, its transcendence degree over Q, the prime field of C is the cardinality of the continuum. Third, it is algebraically closed (see above). It can be shown that any field having these properties is isomorphic (as a field) to C. For example, the algebraic closure of Qp also satisfies these three properties, so these two fields are isomorphic. Also, C is isomorphic to the field of complex Puiseux series. However, specifying an isomorphism requires the axiom of choice. Another consequence of this algebraic characterization is that C contains many proper subfields which are isomorphic to C (the same is true of R, which contains many sub fields isomorphic to itself[citation needed]).
Characterization as a topological field
The preceding characterization of C describes the algebraic aspects of C, only. That is to say, the properties of nearness and continuity, which matter in areas such as analysis and topology, are not dealt with. The following description of C as a topological field (that is, a field that is equipped with a topology, which allows to specify notions such as convergence) does take into account the topological properties.[citation needed]: C contains a subset P (namely the set of positive real numbers) of nonzero elements satisfying the following three conditions:
- P is closed under addition, multiplication and taking inverses.
- If x and y are distinct elements of P, then either x−y or y−x is in P.
- If S is any nonempty subset of P, then S + P = x + P for some x in C.
Moreover, C has a nontrivial involutive automorphism (namely the complex conjugation), fixing P and such that xx∗ is in P for any nonzero x in C. Any field F with these properties can be endowed with a topology by taking the sets B(x, p) = {y | p − (y − x)(y −x) ∈ P} as a base, where x ranges over the field and p ranges over P. With this topology F is isomorphic as a topological field to C.
The only connected locally compact topological fields are R and C. This gives another characterization of C as a topological field, since C can be distinguished from R because the nonzero complex numbers are connected, while the nonzero real numbers are not.
Formal construction
Formal development
Above, complex numbers have been defined by introducing i, the imaginary unit, as a symbol. More rigorously, the set C of complex numbers can be defined as the set R2 of ordered pairs (a, b) of real numbers. In this notation, the above formulas for addition and multiplication read
It is then just a matter of notation to express (a, b) as a + ib.
Though this low-level construction does accurately describe the structure of the complex numbers, the following equivalent definition reveals the algebraic nature of C more immediately. This characterization relies on the notion of fields and polynomials. A field is a set endowed with an addition, subtraction, multiplication and division operations which behave as is familiar from, say, rational numbers. For example, the distributive law
is required to hold for any three elements x, y and z of a field. The set R of real numbers does form a field. A polynomial p(X) with real coefficients is an expression of the form
where the a0, ..., an are real numbers. The usual addition and multiplication of polynomials endows the set R[X] of all such polynomials with a ring structure. This ring is called polynomial ring. The quotient ring R[X]/(X2+1) can be shown to be a field. This extension field contains two square roots of −1, namely (the cosets of) X and −X, respectively. (The cosets of) 1 and X form a basis of R[X]/(X2+1) as a real vector space, which means that each element of the extension field can be uniquely written as a linear combination in these two elements. Equivalently, elements of the extension field can be written as ordered pairs (a,b) of real numbers. Moreover, the above formulas for addition etc. correspond to the ones yielded by this abstract algebraic approach—the two definitions of the field C are said to be isomorphic (as fields). Together with the above-mentioned fact that C is algebraically closed, this also shows that C is an algebraic closure of R.
Matrix representation of complex numbers
Complex numbers can also be represented by 2×2 matrices that have the following form:
Here the entries a and b are real numbers. The sum and product of two such matrices is again of this form, and the sum and product of complex numbers corresponds to the sum and product of such matrices. The geometric description of the multiplication of complex numbers can also be phrased in terms of rotation matrices by using this correspondence between complex numbers and such matrices. Moreover, the square of the absolute value of a complex number expressed as a matrix is equal to the determinant of that matrix:
Finally, the conjugate corresponds to the transpose of the matrix.
Complex analysis
The study of functions of a complex variable is known as complex analysis and has enormous practical use in applied mathematics as well as in other branches of mathematics. Often, the most natural proofs for statements in real analysis or even number theory employ techniques from complex analysis (see prime number theorem for an example). Unlike real functions which are commonly represented as two-dimensional graphs, complex functions have four-dimensional graphs and may usefully be illustrated by color coding a three-dimensional graph to suggest four dimensions, or by animating the complex function's dynamic transformation of the complex plane.
Complex exponential and related functions
The notions of convergent series and continuous functions in (real) analysis have natural analogs in complex analysis. A sequence of complex numbers is said to converge if and only if its real and imaginary parts do. This is equivalent to the (ε, δ)-definition of limits, where the absolute value of real numbers is replaced by the one of complex numbers. From a more abstract point of view, C, endowed with the metric
is a metric space, which notably includes the triangle inequality
for any two complex numbers z1 and z2.
Like in real analysis, this notion of convergence is used to construct a number of elementary functions: the exponential function exp(z), also written ez, is defined as the infinite series
and the series defining the real trigonmetric functions sine and cosine, as well as hyperbolic functions such as sinh also carry over to complex arguments without change. Euler's identity states:
for any real number φ, in particular
Unlike in the situation of real numbers, there is an infinitude of complex solutions z of the equation
for any complex number w ≠ 0. It can be shown that any such solution z—called complex logarithm of a—satisfies
where arg is the argument defined above, and ln the (real) natural logarithm. As arg is a multivalued function, unique only up to a multiple of 2π, log is also multivalued. The principal value of log is often taken by restricting the imaginary part to the interval (−π,π].
Complex exponentiation zω is defined as
Consequently, they are in general multi-valued. For ω = 1 / n, for some natural number n, this recovers the non-unicity of n-th roots mentioned above.
Holomorphic functions
A function f : C → C is called holomorphic if it satisfies the Cauchy-Riemann equations. For example, any R-linear map C → C can be written in the form
with complex coefficients a and b. This map is holomorphic if and only if b = 0. The second summand is real-differentiable, but does not satisfy the Cauchy-Riemann equations.
Complex analysis shows some features not apparent in real analysis. For example, any two holomorphic functions f and g that agree on an arbitrarily small open subset of C necessarily agree everywhere. Meromorphic functions, functions that can locally be written as f(z)/(z − z0)n with a holomorphic function f(z), still share some of the features of holomorphic functions. Other functions have essential singularities, such as sin(1/z) at z = 0.
Applications
Some applications of complex numbers are:
Control theory
In control theory, systems are often transformed from the time domain to the frequency domain using the Laplace transform. The system's poles and zeros are then analyzed in the complex plane. The root locus, Nyquist plot, and Nichols plot techniques all make use of the complex plane.
In the root locus method, it is especially important whether the poles and zeros are in the left or right half planes, i.e. have real part greater than or less than zero. If a system has poles that are
- in the right half plane, it will be unstable,
- all in the left half plane, it will be stable,
- on the imaginary axis, it will have marginal stability.
If a system has zeros in the right half plane, it is a nonminimum phase system.
Signal analysis
Complex numbers are used in signal analysis and other fields for a convenient description for periodically varying signals. For given real functions representing actual physical quantities, often in terms of sines and cosines, corresponding complex functions are considered of which the real parts are the original quantities. For a sine wave of a given frequency, the absolute value |z| of the corresponding z is the amplitude and the argument arg(z) the phase.
If Fourier analysis is employed to write a given real-valued signal as a sum of periodic functions, these periodic functions are often written as complex valued functions of the form
where ω represents the angular frequency and the complex number z encodes the phase and amplitude as explained above.
In electrical engineering, the Fourier transform is used to analyze varying voltages and currents. The treatment of resistors, capacitors, and inductors can then be unified by introducing imaginary, frequency-dependent resistances for the latter two and combining all three in a single complex number called the impedance. (Electrical engineers and some physicists use the letter j for the imaginary unit since i is typically reserved for varying currents and may come into conflict with i.) This approach is called phasor calculus. This use is also extended into digital signal processing and digital image processing, which utilize digital versions of Fourier analysis (and wavelet analysis) to transmit, compress, restore, and otherwise process digital audio signals, still images, and video signals.
Improper integrals
In applied fields, complex numbers are often used to compute certain real-valued improper integrals, by means of complex-valued functions. Several methods exist to do this; see methods of contour integration.
Quantum mechanics
The complex number field is relevant in the mathematical formulations of quantum mechanics, where complex Hilbert spaces provide the context for one such formulation that is convenient and perhaps most standard. The original foundation formulas of quantum mechanics – the Schrödinger equation and Heisenberg's matrix mechanics – make use of complex numbers.
Relativity
In special and general relativity, some formulas for the metric on spacetime become simpler if one takes the time variable to be imaginary. (This is no longer standard in classical relativity, but is used in an essential way in quantum field theory.) Complex numbers are essential to spinors, which are a generalization of the tensors used in relativity.
Applied mathematics
In differential equations, it is common to first find all complex roots r of the characteristic equation of a linear differential equation or equation system and then attempt to solve the system in terms of base functions of the form f(t) = ert. Likewise, in difference equations, the complex roots r of the characteristic equation of the difference equation system are used, to attempt to solve the system in terms of base functions of the form f(t) = r t.
Fluid dynamics
In fluid dynamics, complex functions are used to describe potential flow in two dimensions.
Fractals
Certain fractals are plotted in the complex plane, e.g. the Mandelbrot set and Julia sets.
Algebraic number theory
As mentioned above, any nonconstant polynomial equation (in complex coefficients) has a solution in C. A fortiori, the same is true if the equation has rational coefficients. The roots of such equations are called algebraic numbers–they are a principal object of study in algebraic number theory. Compared to Q, the algebraic closure of Q, which also contains all algebraic numbers, C has the advantage of being easily understandable in geometric terms. In this way, algebraic methods can be used to study geometric questions and vice versa. With algebraic methods, more specifically applying the machinery of field theory to the number field containing roots of unity, it can be shown that it is not possible to construct a regular 9-gon using only compass and straightedge–a purely geometric problem.
Another example are Pythagorean triples (a, b, c), that is to say integers satisfying
(which implies that the triangle having sidelengths a, b, and c is a right triangle). They can be studied by considering Gaussian integers, that is, numbers of the form x + iy, where x and y are integers.
Analytic number theory
Analytic number theory studies numbers, often integers or rationals, by taking advantage of the fact that they can be regarded as complex numbers, in which analytic methods can be used. This is done by encoding number-theoretic information in complex-valued functions. For example, the Riemann zeta-function ζ(s) is related to the distribution of prime numbers.
History
The earliest fleeting reference to square roots of negative numbers perhaps occurred in the work of the Greek mathematician and inventor Heron of Alexandria in the 1st century AD, when, apparently inadvertently, he considered the volume of an impossible frustum of a pyramid,[9] though negative numbers were not conceived in the Hellenistic world.
Complex numbers became more prominent in the 16th century, when closed formulas for the roots of cubic and quartic polynomials were discovered by Italian mathematicians (see Niccolo Fontana Tartaglia, Gerolamo Cardano). It was soon realized that these formulas, even if one was only interested in real solutions, sometimes required the manipulation of square roots of negative numbers. For example, Tartaglia's cubic formula gives the solution to the equation x3 − x = 0 as
and when the three cube roots of are substituted into this expression the three real roots, 0, 1 and −1, result. Rafael Bombelli was the first to explicitly address these seemingly paradoxical solutions of cubic equations and developed the rules for complex arithmetic trying to resolve these issues.
This was doubly unsettling since not even negative numbers were considered to be on firm ground at the time. The term "imaginary" for these quantities was coined by René Descartes in 1637 and was meant to be derogatory[citation needed] (see imaginary number for a discussion of the "reality" of complex numbers). A further source of confusion was that the equation seemed to be capriciously inconsistent with the algebraic identity , which is valid for positive real numbers a and b, and which was also used in complex number calculations with one of a, b positive and the other negative. The incorrect use of this identity (and the related identity ) in the case when both a and b are negative even bedeviled Euler. This difficulty eventually led to the convention of using the special symbol i in place of to guard against this mistake. Even so Euler considered it natural to introduce students to complex numbers much earlier than we do today. In his elementary algebra text book, Elements of Algebra, he introduces these numbers almost at once and then uses them in a natural way throughout.
In the 18th century complex numbers gained wider use, as it was noticed that formal manipulation of complex expressions could be used to simplify calculations involving trigonometric functions. For instance, in 1730 Abraham de Moivre noted that the complicated identities relating trigonometric functions of an integer multiple of an angle to powers of trigonometric functions of that angle could be simply reexpressed by the following well-known formula which bears his name, de Moivre's formula:
In 1748 Leonhard Euler went further and obtained Euler's formula of complex analysis:
by formally manipulating complex power series and observed that this formula could be used to reduce any trigonometric identity to much simpler exponential identities.
The existence of complex numbers was not completely accepted until the geometrical interpretation (see above) had been described by Caspar Wessel in 1799; it was rediscovered several years later and popularized by Carl Friedrich Gauss, and as a result the theory of complex numbers received a notable expansion. The idea of the graphic representation of complex numbers had appeared, however, as early as 1685, in Wallis's De Algebra tractatus.
Wessel's memoir appeared in the Proceedings of the Copenhagen Academy for 1799, and is exceedingly clear and complete, even in comparison with modern works. He also considers the sphere, and gives a quaternion theory from which he develops a complete spherical trigonometry. In 1804 the Abbé Buée independently came upon the same idea which Wallis had suggested, that should represent a unit line, and its negative, perpendicular to the real axis. Buée's paper was not published until 1806, in which year Jean-Robert Argand also issued a pamphlet on the same subject. It is to Argand's essay that the scientific foundation for the graphic representation of complex numbers is now generally referred. Nevertheless, in 1831 Gauss found the theory quite unknown, and in 1832 published his chief memoir on the subject, thus bringing it prominently before the mathematical world. Mention should also be made of an excellent little treatise by Mourey (1828), in which the foundations for the theory of directional numbers are scientifically laid. The general acceptance of the theory is not a little due to the labors of Augustin Louis Cauchy and Niels Henrik Abel, and especially the latter, who was the first to boldly use complex numbers with a success that is well known.
The common terms used in the theory are chiefly due to the founders. Argand called the direction factor, and the modulus; Cauchy (1828) called the reduced form (l'expression réduite); Gauss used i for , introduced the term complex number for a + bi, and called a2 + b2 the norm.
The expression direction coefficient, often used for , is due to Hankel (1867), and absolute value, for modulus, is due to Weierstrass.
Following Cauchy and Gauss have come a number of contributors of high rank, of whom the following may be especially mentioned: Kummer (1844), Leopold Kronecker (1845), Scheffler (1845, 1851, 1880), Bellavitis (1835, 1852), Peacock (1845), and De Morgan (1849). Möbius must also be mentioned for his numerous memoirs on the geometric applications of complex numbers, and Dirichlet for the expansion of the theory to include primes, congruences, reciprocity, etc., as in the case of real numbers.
A complex ring or field is a set of complex numbers which is closed under addition, subtraction, and multiplication. Gauss studied complex numbers of the form a + bi, where a and b are integral, or rational (and i is one of the two roots of x2 + 1 = 0). His student, Ferdinand Eisenstein, studied the type , where is a complex root of x3 − 1 = 0. Other such classes (called cyclotomic fields) of complex numbers are derived from the roots of unity xk − 1 = 0 for higher values of k. This generalization is largely due to Kummer, who also invented ideal numbers, which were expressed as geometrical entities by Felix Klein in 1893. The general theory of fields was created by Évariste Galois, who studied the fields generated by the roots of any polynomial equation in one variable.
The late writers (from 1884) on the general theory include Weierstrass, Schwarz, Richard Dedekind, Otto Hölder, and Henri Poincaré. Extensions to hypercomplex numbers were made by Eduard Study, Alexander Macfarlane and many others.
Generalizations and related notions
The process of extending the field R of reals to C is known as Cayley-Dickson construction. It can be carried further to higher dimensions, yielding the quaternions H and octonions O which are of dimension (as a real vector space) 4 and 8, respectively. However, with increasing dimension, the algebraic properties familiar from real and complex numbers vanish: the quaternions are only a skew field, i.e. xy ≠ yx for two quaternions, the multiplication of octonions fails (in addition to not being commutative) to be associative: (xy)z ≠ x(yz). However, all of these are normed division algebras over R. By Hurwitz's theorem they are the only ones. The next step in the Cayley-Dickson construction, the sedenions fail to have this structure.
The Cayley-Dickson construction is closely related to the regular representation of C, thought of as an R-algebra (an R-vector space with a multiplication), with respect to the basis 1, i. This means the following: the R-linear map
for some fixed complex number w can be represented by a 2×2 matrix (once a basis has been chosen). With respect to the basis 1, i, this matrix is
i.e., the one mentioned in the section on matrix representation of complex numbers above. While this is a linear representation of C in the 2 × 2 real matrices, it is not the only one. Any matrix
has the property that its square is the negative of the identity matrix: Then is also isomorphic to the field C, and gives an alternative complex structure on R2. This is generalized by the notion of a linear complex structure.
Hypercomplex numbers also generalize R, C, H, and O. For example this notion contains the split-complex numbers, which are elements of the ring R[x]/(x2 − 1) (as opposed to R[x]/(x2 + 1)). In this ring, the equation a2 = 1 has four solutions.
The field R is the completion of Q, the field of rational numbers, with respect to the usual absolute value. Other choices of metrics on Q lead to the fields Qp of p-adic numbers (for any prime number p), which are thereby analogous to R. There are no other nontrivial ways of completing Q than R and Qp, by Ostrowski's theorem. The algebraic closure of Qp still carry a norm, but–unlike C–are not complete with respect to it. The completion of turns out to be algebraically closed. This field is called p-adic complex numbers by analogy.
The fields R and Qp and their finite field extensions, including C, are local fields.
See also
- Circular motion using complex numbers
- Complex base systems
- Complex geometry
- Domain coloring
- Eisenstein integer
- Euler's identity
- Gaussian integer
- Mandelbrot set
- Riemann sphere (extended complex plane)
- Root of unity
- Complex square root
Notes
- ^ Joshi (1989, p. 398)
- ^ Burton (1995, p. 294)
- ^ Katz (2004, §9.1.4)
- ^ Aufmann, Richard N.; Barker, Vernon C.; Nation, Richard D. (2007), College Algebra and Trigonometry (6 ed.), Cengage Learning, p. 66, ISBN 0618825150, Chapter P, p. 66
- ^ Abramowitz, Miltonn; Stegun, Irene A. (1964). Handbook of mathematical functions with formulas, graphs, and mathematical tables. Courier Dover Publications. p. 17. ISBN 0-486-61272-4., Section 3.7.26, p. 17
- ^ Cooke, Roger (2008). Classical algebra: its nature, origins, and uses. John Wiley and Sons. p. 59. ISBN 0-470-25952-3., Extract: page 59
- ^ Kasana, H.S. (2005). Complex Variables: Theory And Applications (2nd ed.). PHI Learning Pvt. Ltd. p. 14. ISBN 81-203-2641-5., Extract of chapter 1, page 14
- ^ Nilsson, James William; Riedel, Susan A. (2008). Electric circuits (8th ed.). Prentice Hall. p. 338. ISBN 0-131-98925-1., Chapter 9, page 338
- ^ A brief history of complex numbers
References
Mathematical references
- Ahlfors, Lars (1979), Complex analysis (3rd ed.), McGraw-Hill, ISBN 978-0070006577
- Conway, John B. (1986), Functions of One Complex Variable I, Springer, ISBN 0-387-90328-3
- Joshi, Kapil D. (1989), Foundations of Discrete Mathematics, New York: John Wiley & Sons, ISBN 978-0-470-21152-6
- Pedoe, Dan (1988), Geometry: A comprehensive course, Dover, ISBN 0-486-65812-0
- Solomentsev, E.D. (2001) [1994], "Complex number", Encyclopedia of Mathematics, EMS Press
Historical references
- Burton, David M. (1995), The History of Mathematics (3rd ed.), New York: McGraw-Hill, ISBN 978-0-07-009465-9
- Katz, Victor J. (2004), A History of Mathematics, Brief Version, Addison-Wesley, ISBN 978-0-321-16193-2
- Nahin, Paul J. (1998), An Imaginary Tale: The Story of (hardcover ed.), Princeton University Press, ISBN 0-691-02795-1
- A gentle introduction to the history of complex numbers and the beginnings of complex analysis.
- H.-D. Ebbinghaus ... (1991), Numbers (hardcover ed.), Springer, ISBN 0-387-97497-0
- An advanced perspective on the historical development of the concept of number.
Further reading
- The Road to Reality: A Complete Guide to the Laws of the Universe, by Roger Penrose; Alfred A. Knopf, 2005; ISBN 0-679-45443-8. Chapters 4-7 in particular deal extensively (and enthusiastically) with complex numbers.
- Unknown Quantity: A Real and Imaginary History of Algebra, by John Derbyshire; Joseph Henry Press; ISBN 0-309-09657-X (hardcover 2006). A very readable history with emphasis on solving polynomial equations and the structures of modern algebra.
- Visual Complex Analysis, by Tristan Needham; Clarendon Press; ISBN 0-19-853447-7 (hardcover, 1997). History of complex numbers and complex analysis with compelling and useful visual interpretations.
External links
- Euler's work on Complex Roots of Polynomials at Convergence. MAA Mathematical Sciences Digital Library.
- John and Betty's Journey Through Complex Numbers
- Dimensions: a math film. Chapter 5 presents an introduction to complex arithmetic and stereographic projection. Chapter 6 discusses transformations of the complex plane, Julia sets, and the Mandelbrot set.