Jump to content

Heat pump: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted edits by 138.32.235.36 (talk) to last version by Abc-mn-xyz
No edit summary
Line 1: Line 1:
{{for|theoretical background|Heat pump and refrigeration cycle}}
{{for|theoretical background|Heat pump and refrigeration cycle}}
[[File:Heat Pump.jpg|thumb|225px|Outdoor components of a residential air-source heat pump]]
[[File:Heat Pump.jpg|thumb|225px|Outdoor components of a residential air-source heat pump]]
A '''heat pump''' is a machine or device that moves [[heat]] from one location (the 'source') at a lower temperature to another location (the 'sink' or 'heat sink') at a higher temperature using [[mechanical work]] or a high-temperature heat source. <ref>The Systems and Equipment volume of the ''[[ASHRAE Handbook]]'', ASHRAE, Inc., Atlanta, GA, 2004</ref> A heat pump can be used to provide heating or cooling. Even though the heat pump can heat, it still uses the same basic refrigeration cycle to do this. In other words a heat pump can change which coil is the condenser and which the evaporator. This is normally achieved by a reversing valve. In cooler climates it is common to have heat pumps that are designed only to provide heating.
A '''heat pump''' is a machine created by Kevin Lucaas or device that moves [[heat]] from one location (the 'source') at a lower temperature to another location (the 'sink' or 'heat sink') at a higher temperature using [[mechanical work]] or a high-temperature heat source. <ref>The Systems and Equipment volume of the ''[[ASHRAE Handbook]]'', ASHRAE, Inc., Atlanta, GA, 2004</ref> A heat pump can be used to provide heating or cooling. Even though the heat pump can heat, it still uses the same basic refrigeration cycle to do this. In other words a heat pump can change which coil is the condenser and which the evaporator. This is normally achieved by a reversing valve. In cooler climates it is common to have heat pumps that are designed only to provide heating.


Common examples are food [[refrigerator]]s and [[freezer]]s, [[air conditioner]]s, and reversible-cycle heat pumps for providing building space heating. In heating, ventilation, and air conditioning ([[HVAC]]) applications, a heat pump normally refers to a [[vapor-compression refrigeration]] device that includes a [[reversing valve]] and optimized [[heat exchangers]] so that the direction of heat flow may be reversed. Most commonly, heat pumps draw heat from the air or from the ground.
Common examples are food [[refrigerator]]s and [[freezer]]s, [[air conditioner]]s, and reversible-cycle heat pumps for providing building space heating. In heating, ventilation, and air conditioning ([[HVAC]]) applications, a heat pump normally refers to a [[vapor-compression refrigeration]] device that includes a [[reversing valve]] and optimized [[heat exchangers]] so that the direction of heat flow may be reversed. Most commonly, heat pumps draw heat from the air or from the ground.

Revision as of 20:23, 23 February 2011

Outdoor components of a residential air-source heat pump

A heat pump is a machine created by Kevin Lucaas or device that moves heat from one location (the 'source') at a lower temperature to another location (the 'sink' or 'heat sink') at a higher temperature using mechanical work or a high-temperature heat source. [1] A heat pump can be used to provide heating or cooling. Even though the heat pump can heat, it still uses the same basic refrigeration cycle to do this. In other words a heat pump can change which coil is the condenser and which the evaporator. This is normally achieved by a reversing valve. In cooler climates it is common to have heat pumps that are designed only to provide heating.

Common examples are food refrigerators and freezers, air conditioners, and reversible-cycle heat pumps for providing building space heating. In heating, ventilation, and air conditioning (HVAC) applications, a heat pump normally refers to a vapor-compression refrigeration device that includes a reversing valve and optimized heat exchangers so that the direction of heat flow may be reversed. Most commonly, heat pumps draw heat from the air or from the ground.

Overview

Heat pumps have the ability to move heat energy from one environment to another, and in either direction. This allows the heat pump to both bring heat into an occupied space, and take it out. In the cooling mode a heat pump works the same as an ordinary air conditioner (A/C). A heat pump uses an intermediate fluid called a refrigerant which absorbs heat as it vaporizes and releases the heat when it condenses. It uses an evaporator to absorb heat from inside an occupied space and rejects this heat to the outside through the condenser. The refrigerant flows outside of the space to be conditioned, where the condenser and compressor are located, while the evaporator is inside. The key component that makes a heat pump different from an A/C is the reversing valve. The reversing valve allows for the flow direction of the refrigerant to be changed. This allows the heat to be pumped in either direction.

  • In heating mode the outdoor coil becomes the evaporator, while the indoor becomes the condenser which absorbs the heat from the refrigerant and dissipates to the air flowing through it. The air outside even at 0 °C has heat energy in it. With the refrigerant flowing in the opposite direction the evaporator (outdoor coil) is absorbing the heat from the air and moving it inside. Once it picks up heat it is compressed and then sent to the condenser (indoor coil). The indoor coil then rejects the heat into the air handler, which moves the heated air through out the house.
  • In cooling mode the outdoor coil is now the condenser. This makes the indoor coil now the evaporator. The indoor coil is now the evaporator in the sense that it is going to be used to absorb the heat from inside the enclosed space. The evaporator absorbs the heat from the inside, and takes it to the condenser where it is rejected into the outside air.

Operating principles

Since the heat pump or refrigerator uses a certain amount of work to move the refrigerant, the amount of energy deposited on the hot side is greater than taken from the cold side. One common type of heat pump works by exploiting the physical properties of an evaporating and condensing fluid known as a refrigerant.

A simple stylized diagram of a heat pump's vapor-compression refrigeration cycle: 1) condenser, 2) expansion valve, 3) evaporator, 4) compressor.

The working fluid, in its gaseous state, is pressurized and circulated through the system by a compressor. On the discharge side of the compressor, the now hot and highly pressurized vapor is cooled in a heat exchanger, called a condenser, until it condenses into a high pressure, moderate temperature liquid. The condensed refrigerant then passes through a pressure-lowering device also called a metering device like an expansion valve, capillary tube, or possibly a work-extracting device such as a turbine. The low pressure, liquid refrigerant leaving the expansion device enters another heat exchanger, the evaporator, in which the fluid absorbs heat and boils. The refrigerant then returns to the compressor and the cycle is repeated.

In such a system it is essential that the refrigerant reach a sufficiently high temperature when compressed, since the second law of thermodynamics prevents heat from flowing from a cold fluid to a hot heat sink. Practically, this means the refrigerant must reach a temperature greater than the ambient around the high-temperature heat exchanger. Similarly, the fluid must reach a sufficiently low temperature when allowed to expand, or heat cannot flow from the cold region into the fluid, i.e. the fluid must be colder than the ambient around the cold-temperature heat exchanger. In particular, the pressure difference must be great enough for the fluid to condense at the hot side and still evaporate in the lower pressure region at the cold side. The greater the temperature difference, the greater the required pressure difference, and consequently the more energy needed to compress the fluid. Thus as with all heat pumps, the Coefficient of Performance (amount of heat moved per unit of input work required) decreases with increasing temperature difference.

Insulation is used to reduce the work and energy required to achieve and maintain a lower temperature in the cooled space.

Due to the variations required in temperatures and pressures, many different refrigerants are available. Refrigerators, air conditioners, and some heating systems are common applications that use this technology.

Heat sources

Many heat pumps also use an auxiliary heat source for heating mode. This means that, even though the heat pump is the primary source of heat, another form is available as a back-up. Electricity, oil, or gas are the most common sources. This is put in place so that if the heat pump fails or can't provide enough heat, the auxiliary heat will kick on to make up the difference.

Geothermal heat pumps use the ground as a heat source and sink and water as the heat transport medium. They work in the same manner as an air to air heat pump, but instead of indoor and outdoor coils they use water pumped through earth materials as a heat transfer medium. These are very eco-friendly and are a cheaper alternative in the long run due to lower operating cost. Operating costs can be further reduced by storing summer heat in the ground for use during winter, and (for larger buildings requiring lots of air conditioning) by storing winter cold underground for use during summer.

Applications

In HVAC applications, a heat pump is typically a vapor-compression refrigeration device that includes a reversing valve and optimized heat exchangers so that the direction of heat flow may be reversed. The reversing valve switches the direction of refrigerant through the cycle and therefore the heat pump may deliver either heating or cooling to a building. In the cooler climates the default setting of the reversing valve is heating. The default setting in warmer climates is cooling. Because the two heat exchangers, the condenser and evaporator, must swap functions, they are optimized to perform adequately in both modes. As such, the efficiency of a reversible heat pump is typically slightly less than two separately optimized machines.

In plumbing applications, a heat pump is sometimes used to heat or preheat water for swimming pools or domestic water heaters.

In somewhat rare applications, both the heat extraction and addition capabilities of a single heat pump can be useful, and typically results in very effective use of the input energy. For example, when an air cooling need can be matched to a water heating load, a single heat pump can serve two useful purposes. That is, a heat pump domestic water heater located in the living area of a home could cool the home, reducing or eliminating the need for additional air conditioning. This installation would be best-suited to a climate that is warm or hot most of the year. Unfortunately, these situations are rare because the demand profiles for heating and cooling are often significantly different.

Future developments

In the near future, heat pumps for larger buildings will increasingly run on oil or natural gas, being integrated into generator units which also provide electricity for the same building. These systems are more efficient than current electrical ground source heat pumps already are. In a next development they will be scaled down to single home size engines, producing both electricity and geothermal heat. In such systems, excess heat production during summer will be stored in the ground source for winter heating. Such a system will be much more energy efficient than any currently existing system, both in producing heat and electricity. If such individual systems are interlinked in small neighbor groups of, say, five or ten houses, they will also become as reliable as the national power grid, and this linking allows further gains in energy efficiency. Once these developments are rolled out nationally, they will enormously reduce the need for central electricity production, and they have the potential to reduce total carbon emissions for building services by up to 50 percent.

Refrigerants

Until the 1990s, the refrigerants were often chlorofluorocarbons such as R-12 (dichlorodifluoromethane), one in a class of several refrigerants using the brand name Freon, a trademark of DuPont. Its manufacture was discontinued in 1995 because of the damage that CFCs were alleged to cause to the ozone layer if released into the atmosphere. One widely adopted replacement refrigerant is the hydrofluorocarbon (HFC) known as R-134a (1,1,1,2-tetrafluoroethane). R-134a is not as efficient as the R-12 it replaced (in automotive applications) and therefore, more energy is required to operate systems utilizing R-134a than those using R-12. Other substances such as liquid R-717 ammonia are widely used in large-scale systems, or occasionally the less corrosive but more flammable propane or butane, can also be used.

Since 2001, carbon dioxide, R-744, has increasingly been used, utilizing the transcritical cycle. In residential and commercial applications, the hydrochlorofluorocarbon (HCFC) R-22 is still widely used, however, HFC R-410A does not deplete the ozone layer and is being used more frequently. Hydrogen, helium, nitrogen, or plain air is used in the Stirling cycle, providing the maximum number of options in environmentally friendly gases. More recent refrigerators are now exploiting the R600A which is isobutane, and does not deplete the ozone and is friendly to the environment.

Dimethyl ether (DME) is also gaining popularity as a refrigerant.[2]

Efficiency

When comparing the performance of heat pumps, it is best to avoid the word "efficiency" which has a very specific thermodynamic definition. The term coefficient of performance (COP) is used to describe the ratio of useful heat movement to work input. Most vapor-compression heat pumps utilize electrically powered motors for their work input. However, in most vehicle applications, shaft work, via their internal combustion engines, provide the needed work.

When used for heating a building on a mild day of say 10 °C, a typical air-source heat pump has a COP of 3 to 4, whereas a typical electric resistance heater has a COP of 1.0. That is, one joule of electrical energy will cause a resistance heater to produce one joule of useful heat, while under ideal conditions, one joule of electrical energy can cause a heat pump to move much more than one joule of heat from a cooler place to a warmer place.

Note that the heat pump is more efficient on average in hotter climates than cooler ones, so when the weather is much warmer (in a desert city or southern city) the unit will perform better than average COP. Conversely in cold weather the COP approaches 1. Thus when there is a wide temperature differential on a hot day the COP is higher than average (better).

When there is a high temperature differential on a cold day, e.g., when an air-source heat pump is used to heat a house on a very cold winter day of say 0 °C, it takes more work to move the same amount of heat indoors than on a mild day. Ultimately, due to Carnot efficiency limits, the heat pump's performance will approach 1.0 as the outdoor-to-indoor temperature difference increases for colder climates (temperature gets colder). This typically occurs around −18 °C (0 °F) outdoor temperature for air source heat pumps. Also, as the heat pump takes heat out of the air, some moisture in the outdoor air may condense and possibly freeze on the outdoor heat exchanger. The system must periodically melt this ice. In other words, when it is extremely cold outside, it is simpler, and wears the machine less, to heat using an electric-resistance heater than to strain an air-source heat pump.

Geothermal heat pumps, on the other hand, are dependent upon the temperature underground, which is "mild" (typically 10 °C at a depth of more than 1.5m for the UK) all year round. Their COP is therefore normally in the range of 4.0 to 5.0.

The design of the evaporator and condenser heat exchangers is also very important to the overall efficiency of the heat pump. The heat exchange surface areas and the corresponding temperature differential (between the refrigerant and the air stream) directly affect the operating pressures and hence the work the compressor has to do in order to provide the same heating or cooling effect. Generally the larger the heat exchanger the lower the temperature differential and the more efficient the system. Since heat exchangers are expensive, and the heat pump industry generally competes on price rather than efficiency, the drive towards more efficient heat pumps and air conditioners is often led by legislative measures on minimum efficiency standards.

In cooling mode a heat pump's operating performance is described as its energy efficiency ratio (EER) or seasonal energy efficiency ratio (SEER), and both measures have units of BTU/(h·W) (1 BTU/(h·W) = 0.293 W/W). A larger EER number indicates better performance. The manufacturer's literature should provide both a COP to describe performance in heating mode and an EER or SEER to describe performance in cooling mode. Actual performance varies, however, and depends on many factors such as installation, temperature differences, site elevation, and maintenance.

Heat pumps are more effective for heating than for cooling if the temperature difference is held equal. This is because the compressor's input energy is largely converted to useful heat when in heating mode, and is discharged along with the moved heat via the condenser. But for cooling, the condenser is normally outdoors, and the compressor's dissipated work is rejected rather than put to a useful purpose.

For the same reason, opening a food refrigerator or freezer heats up the room rather than cooling it because its refrigeration cycle rejects heat to the indoor air. This heat includes the compressor's dissipated work as well as the heat removed from the inside of the appliance.

The COP for a heat pump in a heating or cooling application, with steady-state operation, is:

where

  • is the amount of heat extracted from a cold reservoir at temperature ,
  • is the amount of heat delivered to a hot reservoir at temperature ,
  • is the compressor's dissipated work.
  • All temperatures are absolute temperatures usually measured in kelvins (K).

COP and lift

The COP increases as the temperature difference, or "lift", decreases between heat source and destination. The COP can be maximised at design time by choosing a heating system requiring only a low final water temperature (e.g. underfloor heating), and by choosing a heat source with a high average temperature (e.g. the ground). Domestic hot water (DHW) and radiators require high water temperatures, affecting the choice of heat pump technology.

Pump type and source Typical use case COP variation with Output Temperature
35 °C
(e.g. heated screed floor)
45 °C
(e.g. heated screed floor)
55 °C
(e.g. heated timber floor)
65 °C
(e.g. radiator or DHW)
75 °C
(e.g. radiator & DHW)
85 °C
(e.g. radiator & DHW)
High efficiency air source heat pump (ASHP). Air at −20 °C[3] 2.2 2.0
Two-stage ASHP air at −20 °C[4] Low source temp. 2.4 2.2 1.9
High efficiency ASHP air at 0 °C[3] Low output temp. 3.8 2.8 2.2 2.0
Prototype transcritical CO
2
(R744) heat pump with tripartite gas cooler, source at 0 °C[5]
High output temp. 3.3 4.2 3.0
Ground source heat pump (GSHP). Water at 0 °C[3] 5.0 3.7 2.9 2.4
GSHP ground at 10 °C[3] Low output temp. 7.2 5.0 3.7 2.9 2.4
Theoretical Carnot cycle limit, source −20 °C 5.6 4.9 4.4 4.0 3.7 3.4
Theoretical Carnot cycle limit, source 0 °C 8.8 7.1 6.0 5.2 4.6 4.2
Theoretical Lorentz cycle limit (CO
2
pump), return fluid 25 °C, source 0 °C[5]
10.1 8.8 7.9 7.1 6.5 6.1
Theoretical Carnot cycle limit, source 10 °C 12.3 9.1 7.3 6.1 5.4 4.8

Types

The two main types of heat pumps are compression heat pumps and absorption heat pumps. Compression heat pumps always operate on mechanical energy (through electricity), while absorption heat pumps may also run on heat as an energy source (through electricity or burnable fuels).[6] An absorption heat pump may be fueled by natural gas or LP gas, for example. While the Gas Utilization Efficiency in such a device, which is the ratio of the energy supplied to the energy consumed, may average only 1.5, that is better than a natural gas or LP gas furnace, which can only approach 1. Although an absorption heat pump may not be as efficient as an electric compression heat pump, an absorption heat pump fueled by natural gas may be advantageous in locations where electricity is relatively expensive and natural gas is relatively inexpensive. A natural gas-fired absorption heat pump might also avoid the cost of an electrical service upgrade which is sometimes necessary for an electric heat pump installation. In the case of air-to-air heat pumps, an absorption heat pump might also have an advantage in colder regions, due to a lower minimum operating temperature.ROBUR heat pumps comparison

A number of sources have been used for the heat source for heating private and communal buildings.[7]

  • air source heat pump (extracts heat from outside air)
    • air–air heat pump (transfers heat to inside air)
    • air–water heat pump (transfers heat to a tank of water)
  • geothermal heat pump (extracts heat from the ground or similar sources)
    • geothermal–air heat pump (transfers heat to inside air)
      • ground–air heat pump (ground as a source of heat)
      • rock–air heat pump (rock as a source of heat)
      • water–air heat pump (body of water as a source of heat)
    • geothermal–water heat pump (transfers heat to a tank of water)
      • ground–water heat pump (ground as a source of heat)
      • rock–water heat pump (rock as a source of heat)
      • water–water heat pump (body of water as a source of heat)

Heat sources

Most commonly, heat pumps draw heat from the air (outside or inside air) or from the ground (groundwater or soil).[8] The heat drawn from the ground is in most cases stored solar heat, and it should not be confused with geothermal heat, though the latter will contribute in some small measure to all heat in the ground. Other heat sources include water; nearby streams and other natural water bodies have been used, and sometimes domestic waste water which is often warmer than the ambient temperature.

Air-source heat pumps

Air source heat pumps are relatively easy (and inexpensive) to install and have therefore historically been the most widely used heat pump type. However, they suffer limitations due to their use of the outside air as a heat source or sink. The higher temperature differential during periods of extreme cold or heat leads to declining efficiency, as explained above. In mild weather, COP may be around 4.0, while at temperatures below around −8 °C (17 °F) an air-source heat pump can achieve a COP of 2.5 or better, which is considerably more than the COP that may be achieved by conventional heating systems. The average COP over seasonal variation is typically 2.5-2.8,[9] with exceptional models able to exceed 6.0 (2.8 kW).[10]

Air source heat pumps for cold climates

At least two manufacturers[11] [12]are selling heat pumps that maintain better heating output at lower outside temperatures than conventional air source heat pumps. These low temperature optimized models make air source heat pumps more practical for cold climates because they don't freeze to a stop that quickly. In areas where only one fossil fuel is currently available (e.g. heating oil; no natural gas pipes available) these heat pumps could be used as an alternative, supplemental heat source to reduce a building's direct dependence on fossil fuel. Depending on fuel and electricity prices, using the heat pump for heating may be less expensive than fossil fuel. A backup, fossil-fuel heat source may still be required for the coldest days.

The heating output of low temperature optimized heat pumps (and hence their energy efficiency) still declines as the temperature drops, but the threshold at which the decline starts is lower than conventional pumps, as shown in the following table (temperatures are approximate and may vary by manufacturer and model):

Air Source Heat Pump Type Full heat output at or above this temperature Heat output down to 60% of maximum at
Conventional 47 °F (8.3 °C) 17 °F (-8.3 °C)
Low Temp Optimized 14 °F (-10 °C) -13 °F (-25 °C)

Ground source heat pumps

Ground source heat pumps, which are also referred to as Geothermal heat pumps, typically have higher efficiencies than air-source heat pumps. This is because they draw heat from the ground or groundwater which is at a relatively constant temperature all year round below a depth of about thirty feet (9 m)[13]. This means that the temperature differential is lower, leading to higher efficiency. Ground-source heat pumps typically have COPs of 3.5-4.0 at the beginning of the heating season, with lower COPs as heat is drawn from the ground. The trade off for this improved performance is that a ground-source heat pump is more expensive to install due to the need for the digging of wells or trenches in which to place the pipes that carry the heat exchange fluid. When compared versus each other, groundwater heat pumps are generally more efficient than heat pumps using heat from the soil. Their efficiency can be further improved, by pumping summer heat into the ground. One way is to use ground water to cool the floors on hot days. Another way is to make large solar collectors, for instance by putting plastic pipes just under the roof tiles or in the tarmac of the parking lot. The most cost effective way is to put a large air to water heat exchanger on the rooftop.

Heat distribution

Heat pumps are only highly efficient when they distribute produced heat at a low temperature, ideally around or below 32 °C (90 °F). Normal steel plate radiators are no good: they would need to have four to six times their current size. Underfloor heating is the ideal solution. When wooden floors or carpets would spoil their efficiency, wall heaters (plastic pipes covered with a thick layer of chalk) can be used. Both systems have the disadvantage that they are slow starters, and that they would require extensive renovation in existing buildings. The alternative is a warm air system in which water runs through a ventilator driven water to air heater. Such a thing can either complement floor heating during warm up, or it can be a quick and economical way to implement a heat pump heater into existing buildings. Oversizing them reduces their noise. To efficiently distribute warm water or air from a heat pump, water pipes or air shafts should have significantly larger diameters then in conventional systems, and underfloor heaters should have much more pipes per square meter.

Solid state heat pumps

In 1881, the German physicist Emil Warburg put a block of iron into a strong magnetic field and found that it increased very slightly in temperature. Some commercial ventures to implement this technology are underway, claiming to cut energy consumption by 40% compared to current domestic refrigerators.[14] The process works as follows: Powdered gadolinium is moved into a magnetic field, heating the material by 2 to 5 °C (4 to 9 °F). The heat is removed by a circulating fluid. The material is then moved out of the magnetic field, reducing its temperature below its starting temperature.

Solid state heat pumps using the Thermoelectric Effect have improved over time to the point where they are useful for certain refrigeration tasks. Commercially available technologies have efficiencies that are currently well below that of mechanical heat pumps, however this area of technology is currently the subject of active research in materials science.

Near-solid-state heat pumps using Thermoacoustics are commonly used in cryogenic laboratories.

History

Milestones:

See also

References

  1. ^ The Systems and Equipment volume of the ASHRAE Handbook, ASHRAE, Inc., Atlanta, GA, 2004
  2. ^ http://www.mecanica.pub.ro/frigo-eco/R404A_DME.pdf 101110
  3. ^ a b c d The Canadian Renewable Energy Network 'Commercial Earth Energy Systems', Figure 29. . Retrieved December 8, 2009.
  4. ^ Technical Institute of Physics and Chemistry, Chinese Academy of Sciences 'State of the Art of Air-source Heat Pump for Cold Region', Figure 5. . Retrieved April 19, 2008.
  5. ^ a b SINTEF Energy Research 'Integrated CO2 Heat Pump Systems for Space Heating and DHW in low-energy and passive houses', J. Steen, Table 3.1, Table 3.3. . Retrieved April 19, 2008.
  6. ^ http://www2.vlaanderen.be/economie/energiesparen/doc/brochure_warmtepomp.pdf
  7. ^ Homeowners using heat pump systems[dead link]
  8. ^ "Heat pumps sources including groundwater, soil, outside and inside air)" (PDF). Retrieved 2010-06-02.
  9. ^ "Carrier web site: Heat Pumps". Residential.carrier.com. Retrieved 2010-06-02.
  10. ^ "the IPCC 4th Working Group III report" (PDF). Retrieved 2010-06-02.
  11. ^ http://www.mitsubishicomfort.com/about-us/press-releases/mr-slim%C2%AE-provide-unmatched-year-round-comfort
  12. ^ http://www.gotohallowell.com/Acadia%E2%84%A2-Products/
  13. ^ Earth Temperature and Site Geology, http://www.geo4va.vt.edu/A1/A1.htm
  14. ^ Guardian Unlimited, December 2006 'A cool new idea from British scientists: the magnetic fridge'
  15. ^ Banks, David L. An Introduction to Thermogeology: Ground Source Heating and Cooling. Wiley-Blackwell. ISBN 978-1-4051-7061-1.