Jump to content

FOSB: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Delta FosB: fixing page range dashes using AWB (7560)
m [Pu287]Misc citation tidying.
Line 1: Line 1:
{{PBB|geneid=2354}}
{{PBB|geneid=2354}}
'''FBJ murine osteosarcoma viral oncogene homolog B''' also known as '''FOSB''' (in humans) or '''FosB''' (in other species) is a [[protein]] that, in humans, is encoded by the ''FOSB'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: FOSB FBJ murine osteosarcoma viral oncogene homolog B| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2354| accessdate = }}</ref><ref name="pmid1702972">{{cite journal | author = Siderovski DP, Blum S, Forsdyke RE, Forsdyke DR | title = A set of human putative lymphocyte G0/G1 switch genes includes genes homologous to rodent cytokine and zinc finger protein-encoding genes | journal = DNA Cell Biol. | volume = 9 | issue = 8 | pages = 579–87 | year = 1990 | month = October | pmid = 1702972 | doi = 10.1089/dna.1990.9.579| url = }}</ref><ref name="pmid1301997">{{cite journal | author = Martin-Gallardo A, McCombie WR, Gocayne JD, FitzGerald MG, Wallace S, Lee BM, Lamerdin J, Trapp S, Kelley JM, Liu LI | title = Automated DNA sequencing and analysis of 106 kilobases from human chromosome 19q13.3 | journal = Nat. Genet. | volume = 1 | issue = 1 | pages = 34–9 | year = 1992 | month = April | pmid = 1301997 | doi = 10.1038/ng0492-34 | url = }}</ref>
'''FBJ murine osteosarcoma viral oncogene homolog B''' also known as '''FOSB''' (in humans) or '''FosB''' (in other species) is a [[protein]] that, in humans, is encoded by the ''FOSB'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: FOSB FBJ murine osteosarcoma viral oncogene homolog B| pmid = 2354 }}</ref><ref name="pmid1702972">{{cite journal | author = Siderovski DP, Blum S, Forsdyke RE, Forsdyke DR | title = A set of human putative lymphocyte G0/G1 switch genes includes genes homologous to rodent cytokine and zinc finger protein-encoding genes | journal = DNA Cell Biol. | volume = 9 | issue = 8 | pages = 579–87 | year = 1990 | month = October | pmid = 1702972 | doi = 10.1089/dna.1990.9.579| url = }}</ref><ref name="pmid1301997">{{cite journal | author = Martin-Gallardo A, McCombie WR, Gocayne JD, FitzGerald MG, Wallace S, Lee BM, Lamerdin J, Trapp S, Kelley JM, Liu LI | title = Automated DNA sequencing and analysis of 106 kilobases from human chromosome 19q13.3 | journal = Nat. Genet. | volume = 1 | issue = 1 | pages = 34–9 | year = 1992 | month = April | pmid = 1301997 | doi = 10.1038/ng0492-34 | url = }}</ref>


The Fos gene family consists of 4 members: [[C-Fos|FOS]], FOSB, [[FOSL1]], and [[FOSL2]]. These genes encode [[leucine zipper]] proteins that can dimerize with proteins of the [[C-jun|JUN]] family, thereby forming the transcription factor complex [[AP-1 (transcription factor)|AP-1]]. As such, the FOS proteins have been implicated as regulators of cell proliferation, differentiation, and transformation.<ref name="entrez"/>
The Fos gene family consists of 4 members: [[C-Fos|FOS]], FOSB, [[FOSL1]], and [[FOSL2]]. These genes encode [[leucine zipper]] proteins that can dimerize with proteins of the [[C-jun|JUN]] family, thereby forming the transcription factor complex [[AP-1 (transcription factor)|AP-1]]. As such, the FOS proteins have been implicated as regulators of cell proliferation, differentiation, and transformation.<ref name="entrez"/>


==Delta FosB==
==Delta FosB==
'''Delta FosB''' is a truncated [[splice variant]] of FosB.<ref name="pmid1900040">{{cite journal | author = Nakabeppu Y, Nathans D | title = A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity | journal = Cell | volume = 64 | issue = 4 | pages = 751–9 | year = 1991 | month = February | pmid = 1900040 | doi = 10.1016/0092-8674(91)90504-R | url = }}</ref> Delta FosB has been implicated in the development of [[drug addiction]] and control of the [[reward system]] in the [[brain]], and is linked to changes in a number of other gene products such as [[CREB]] and [[sirtuin]]s.<ref name="Werme">{{cite journal |author=Werme M, Messer C, Olson L, ''et al.'' |title=Delta FosB regulates wheel running |journal=J. Neurosci. |volume=22 |issue=18 |pages=8133–8 |year=2002 |pmid=12223567 |doi=}}</ref><ref name="pmid14566342">{{cite journal |author=McClung CA, Nestler EJ |title=Regulation of gene expression and cocaine reward by CREB and DeltaFosB |journal=Nature Neuroscience |volume=6 |issue=11 |pages=1208–15 |year=2003 |month=November |pmid=14566342 |doi=10.1038/nn1143 |url=}}</ref><ref name="pmid18640924">{{cite journal |author=Nestler EJ |title=Review. Transcriptional mechanisms of addiction: role of DeltaFosB |journal=Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences |volume=363 |issue=1507 |pages=3245–55 |year=2008 |month=October |pmid=18640924 |doi=10.1098/rstb.2008.0067 |url= |pmc=2607320}}</ref><ref name="pmid18632938">{{cite journal |author=Renthal W, Carle TL, Maze I, Covington HE, Truong HT, Alibhai I, Kumar A, Montgomery RL, Olson EN, Nestler EJ |title=Delta FosB mediates epigenetic desensitization of the c-fos gene after chronic amphetamine exposure |journal=The Journal of Neuroscience : the Official Journal of the Society for Neuroscience |volume=28 |issue=29 |pages=7344–9 |year=2008 |month=July |pmid=18632938 |pmc=2610249 |doi=10.1523/JNEUROSCI.1043-08.2008 |url=}}</ref><ref name="pmid18635399">{{cite journal |author=Renthal W, Nestler EJ |title=Epigenetic mechanisms in drug addiction |journal=Trends in Molecular Medicine |volume=14 |issue=8 |pages=341–50 |year=2008 |month=August |pmid=18635399 |doi=10.1016/j.molmed.2008.06.004 |url= |pmc=2753378}}</ref><ref name="pmid19447090">{{cite journal |author=Renthal W, Kumar A, Xiao G, Wilkinson M, Covington HE, Maze I, Sikder D, Robison AJ, LaPlant Q, Dietz DM, Russo SJ, Vialou V, Chakravarty S, Kodadek TJ, Stack A, Kabbaj M, Nestler EJ |title=Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins |journal=Neuron |volume=62 |issue=3 |pages=335–48 |year=2009 |month=May |pmid=19447090 |doi=10.1016/j.neuron.2009.03.026 |url= |pmc=2779727}}</ref> Delta FosB also regulates the commitment of mesenchymal precursor cells to the [[adipocyte]] or [[osteoblast]] lineage.<ref name="pmid10973317">{{cite journal | author = Sabatakos G, Sims NA, Chen J, Aoki K, Kelz MB, Amling M, Bouali Y, Mukhopadhyay K, Ford K, Nestler EJ, Baron R | title = Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. | journal = Nature Medicine | volume = 6 | issue = 9 | pages = 985–90 | year = 2000 | month = September | pmid = 10973317 | doi = doi:10.1038/79683 | url = }}</ref>
'''Delta FosB''' is a truncated [[splice variant]] of FosB.<ref name="pmid1900040">{{cite journal | author = Nakabeppu Y, Nathans D | title = A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity | journal = Cell | volume = 64 | issue = 4 | pages = 751–9 | year = 1991 | month = February | pmid = 1900040 | doi = 10.1016/0092-8674(91)90504-R | url = }}</ref> Delta FosB has been implicated in the development of [[drug addiction]] and control of the [[reward system]] in the [[brain]], and is linked to changes in a number of other gene products such as [[CREB]] and [[sirtuin]]s.<ref name="Werme">{{cite journal |author=Werme M, Messer C, Olson L, ''et al.'' |title=Delta FosB regulates wheel running |journal=J. Neurosci. |volume=22 |issue=18 |pages=8133–8 |year=2002 |pmid=12223567 |doi=}}</ref><ref name="pmid14566342">{{cite journal |author=McClung CA, Nestler EJ |title=Regulation of gene expression and cocaine reward by CREB and DeltaFosB |journal=Nature Neuroscience |volume=6 |issue=11 |pages=1208–15 |year=2003 |month=November |pmid=14566342 |doi=10.1038/nn1143 |url=}}</ref><ref name="pmid18640924">{{cite journal |author=Nestler EJ |title=Review. Transcriptional mechanisms of addiction: role of DeltaFosB |journal=Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences |volume=363 |issue=1507 |pages=3245–55 |year=2008 |month=October |pmid=18640924 |doi=10.1098/rstb.2008.0067 |url= |pmc=2607320}}</ref><ref name="pmid18632938">{{cite journal |author=Renthal W, Carle TL, Maze I, Covington HE, Truong HT, Alibhai I, Kumar A, Montgomery RL, Olson EN, Nestler EJ |title=Delta FosB mediates epigenetic desensitization of the c-fos gene after chronic amphetamine exposure |journal=The Journal of Neuroscience : the Official Journal of the Society for Neuroscience |volume=28 |issue=29 |pages=7344–9 |year=2008 |month=July |pmid=18632938 |pmc=2610249 |doi=10.1523/JNEUROSCI.1043-08.2008 |url=}}</ref><ref name="pmid18635399">{{cite journal |author=Renthal W, Nestler EJ |title=Epigenetic mechanisms in drug addiction |journal=Trends in Molecular Medicine |volume=14 |issue=8 |pages=341–50 |year=2008 |month=August |pmid=18635399 |doi=10.1016/j.molmed.2008.06.004 |url= |pmc=2753378}}</ref><ref name="pmid19447090">{{cite journal |author=Renthal W, Kumar A, Xiao G, Wilkinson M, Covington HE, Maze I, Sikder D, Robison AJ, LaPlant Q, Dietz DM, Russo SJ, Vialou V, Chakravarty S, Kodadek TJ, Stack A, Kabbaj M, Nestler EJ |title=Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins |journal=Neuron |volume=62 |issue=3 |pages=335–48 |year=2009 |month=May |pmid=19447090 |doi=10.1016/j.neuron.2009.03.026 |url= |pmc=2779727}}</ref> Delta FosB also regulates the commitment of mesenchymal precursor cells to the [[adipocyte]] or [[osteoblast]] lineage.<ref name="pmid10973317">{{cite journal | author = Sabatakos G, Sims NA, Chen J, Aoki K, Kelz MB, Amling M, Bouali Y, Mukhopadhyay K, Ford K, Nestler EJ, Baron R | title = Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. | journal = Nature Medicine | volume = 6 | issue = 9 | pages = 985–90 | year = 2000 | month = September | pmid = 10973317 | doi = 10.1038/79683 | url = }}</ref>


==Role in cocaine use==
==Role in cocaine use==
"Delta FosB" levels have been found to increase upon the use of cocaine.<ref name="pmid9668659">{{cite journal | author = Hope BT | title = Cocaine and the AP-1 transcription factor complex | journal = Ann. N. Y. Acad. Sci. | volume = 844 | issue = | pages = 1–6 | year = 1998 | month = May | pmid = 9668659 | doi = 10.1111/j.1749-6632.1998.tb08216.x | url = }}</ref> Each subsequent dose of cocaine will continue to increase the levels of Delta FosB with no ceiling of tolerance. Increasing the levels of Delta FosB has led to increases in "Brain-Derived Neurotrophic Factor" ([[BDNF]]) levels, which in turn will increase the number of dendritic branches and spines present on neurons involved with the [[nucleus accumbens]] and [[prefrontal cortex]] areas of the brain. This change can be identified rather quickly, and may be sustained weeks after the last dose of the drug. This consequence of cocaine use may attribute to the idea of [[sensitization]] presented with the drug.
"Delta FosB" levels have been found to increase upon the use of cocaine.<ref name="pmid9668659">{{cite journal | author = Hope BT | title = Cocaine and the AP-1 transcription factor complex | journal = Ann. N. Y. Acad. Sci. | volume = 844 | issue = 1 THE NEUROCHEM| pages = 1–6 | year = 1998 | month = May | pmid = 9668659 | doi = 10.1111/j.1749-6632.1998.tb08216.x | url = }}</ref> Each subsequent dose of cocaine will continue to increase the levels of Delta FosB with no ceiling of tolerance. Increasing the levels of Delta FosB has led to increases in "Brain-Derived Neurotrophic Factor" ([[BDNF]]) levels, which in turn will increase the number of dendritic branches and spines present on neurons involved with the [[nucleus accumbens]] and [[prefrontal cortex]] areas of the brain. This change can be identified rather quickly, and may be sustained weeks after the last dose of the drug. This consequence of cocaine use may attribute to the idea of [[sensitization]] presented with the drug.


==See also==
==See also==

Revision as of 08:02, 17 March 2011

Template:PBB FBJ murine osteosarcoma viral oncogene homolog B also known as FOSB (in humans) or FosB (in other species) is a protein that, in humans, is encoded by the FOSB gene.[1][2][3]

The Fos gene family consists of 4 members: FOS, FOSB, FOSL1, and FOSL2. These genes encode leucine zipper proteins that can dimerize with proteins of the JUN family, thereby forming the transcription factor complex AP-1. As such, the FOS proteins have been implicated as regulators of cell proliferation, differentiation, and transformation.[1]

Delta FosB

Delta FosB is a truncated splice variant of FosB.[4] Delta FosB has been implicated in the development of drug addiction and control of the reward system in the brain, and is linked to changes in a number of other gene products such as CREB and sirtuins.[5][6][7][8][9][10] Delta FosB also regulates the commitment of mesenchymal precursor cells to the adipocyte or osteoblast lineage.[11]

Role in cocaine use

"Delta FosB" levels have been found to increase upon the use of cocaine.[12] Each subsequent dose of cocaine will continue to increase the levels of Delta FosB with no ceiling of tolerance. Increasing the levels of Delta FosB has led to increases in "Brain-Derived Neurotrophic Factor" (BDNF) levels, which in turn will increase the number of dendritic branches and spines present on neurons involved with the nucleus accumbens and prefrontal cortex areas of the brain. This change can be identified rather quickly, and may be sustained weeks after the last dose of the drug. This consequence of cocaine use may attribute to the idea of sensitization presented with the drug.

See also

References

  1. ^ a b "Entrez Gene: FOSB FBJ murine osteosarcoma viral oncogene homolog B". PMID 2354. {{cite web}}: Missing or empty |url= (help)
  2. ^ Siderovski DP, Blum S, Forsdyke RE, Forsdyke DR (1990). "A set of human putative lymphocyte G0/G1 switch genes includes genes homologous to rodent cytokine and zinc finger protein-encoding genes". DNA Cell Biol. 9 (8): 579–87. doi:10.1089/dna.1990.9.579. PMID 1702972. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  3. ^ Martin-Gallardo A, McCombie WR, Gocayne JD, FitzGerald MG, Wallace S, Lee BM, Lamerdin J, Trapp S, Kelley JM, Liu LI (1992). "Automated DNA sequencing and analysis of 106 kilobases from human chromosome 19q13.3". Nat. Genet. 1 (1): 34–9. doi:10.1038/ng0492-34. PMID 1301997. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  4. ^ Nakabeppu Y, Nathans D (1991). "A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity". Cell. 64 (4): 751–9. doi:10.1016/0092-8674(91)90504-R. PMID 1900040. {{cite journal}}: Unknown parameter |month= ignored (help)
  5. ^ Werme M, Messer C, Olson L; et al. (2002). "Delta FosB regulates wheel running". J. Neurosci. 22 (18): 8133–8. PMID 12223567. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  6. ^ McClung CA, Nestler EJ (2003). "Regulation of gene expression and cocaine reward by CREB and DeltaFosB". Nature Neuroscience. 6 (11): 1208–15. doi:10.1038/nn1143. PMID 14566342. {{cite journal}}: Unknown parameter |month= ignored (help)
  7. ^ Nestler EJ (2008). "Review. Transcriptional mechanisms of addiction: role of DeltaFosB". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 363 (1507): 3245–55. doi:10.1098/rstb.2008.0067. PMC 2607320. PMID 18640924. {{cite journal}}: Unknown parameter |month= ignored (help)
  8. ^ Renthal W, Carle TL, Maze I, Covington HE, Truong HT, Alibhai I, Kumar A, Montgomery RL, Olson EN, Nestler EJ (2008). "Delta FosB mediates epigenetic desensitization of the c-fos gene after chronic amphetamine exposure". The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. 28 (29): 7344–9. doi:10.1523/JNEUROSCI.1043-08.2008. PMC 2610249. PMID 18632938. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  9. ^ Renthal W, Nestler EJ (2008). "Epigenetic mechanisms in drug addiction". Trends in Molecular Medicine. 14 (8): 341–50. doi:10.1016/j.molmed.2008.06.004. PMC 2753378. PMID 18635399. {{cite journal}}: Unknown parameter |month= ignored (help)
  10. ^ Renthal W, Kumar A, Xiao G, Wilkinson M, Covington HE, Maze I, Sikder D, Robison AJ, LaPlant Q, Dietz DM, Russo SJ, Vialou V, Chakravarty S, Kodadek TJ, Stack A, Kabbaj M, Nestler EJ (2009). "Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins". Neuron. 62 (3): 335–48. doi:10.1016/j.neuron.2009.03.026. PMC 2779727. PMID 19447090. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  11. ^ Sabatakos G, Sims NA, Chen J, Aoki K, Kelz MB, Amling M, Bouali Y, Mukhopadhyay K, Ford K, Nestler EJ, Baron R (2000). "Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis". Nature Medicine. 6 (9): 985–90. doi:10.1038/79683. PMID 10973317. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  12. ^ Hope BT (1998). "Cocaine and the AP-1 transcription factor complex". Ann. N. Y. Acad. Sci. 844 (1 THE NEUROCHEM): 1–6. doi:10.1111/j.1749-6632.1998.tb08216.x. PMID 9668659. {{cite journal}}: Unknown parameter |month= ignored (help)

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


Template:PBB Controls