Jump to content

Holding (aeronautics): Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
SmackBot (talk | contribs)
Dated {{Dubious}}. (Build p612)
History segment deleted. See Discussion. No reference, dubious information.
Tag: section blanking
Line 4: Line 4:


In [[aviation]], '''holding''' (or '''flying a hold''') is a maneuver designed to delay an aircraft already in flight while keeping it within a specified airspace.<ref name="IFH-general">'''FAA-H-8083-15A''', ''Instrument Flying Handbook'', Chapter 10. http://www.faa.gov/library/manuals/aviation/instrument_flying_handbook/</ref>
In [[aviation]], '''holding''' (or '''flying a hold''') is a maneuver designed to delay an aircraft already in flight while keeping it within a specified airspace.<ref name="IFH-general">'''FAA-H-8083-15A''', ''Instrument Flying Handbook'', Chapter 10. http://www.faa.gov/library/manuals/aviation/instrument_flying_handbook/</ref>

==History==

The holding pattern was first used when [[Vereenigde Oost-Indische Compagnie|VOC]] ships where about to enter harbour of [[Amsterdam]] and could not continue to proceed due to local traffic. Therefore they had to hold along the island called [[Pampus]] near [[Amsterdam]], whose shape was the same as the holding pattern we know today.{{Dubious|date=June 2011}}


==Implementation==
==Implementation==

Revision as of 12:05, 24 June 2011

A standard holding pattern. Shown are the entry (green), the holding fix (red) and the holding pattern itself (blue)

In aviation, holding (or flying a hold) is a maneuver designed to delay an aircraft already in flight while keeping it within a specified airspace.[1]

Implementation

A holding pattern for instrument flight rules (IFR) aircraft is usually a racetrack pattern based on a holding fix. This fix can be a radio beacon such as a non-directional beacon (NDB) or VHF omnidirectional range (VOR). The fix is the start of the first turn of the racetrack pattern. Aircraft will fly towards the fix, and once there will enter a predefined racetrack pattern. A standard holding pattern uses right-hand turns and takes approximately 4 minutes to complete (one minute for each 180 degree turn, and two one-minute straight ahead sections).[1] Deviations from this pattern can happen if long delays are expected; longer legs (usually two or three minutes) may be used, or aircraft with distance measuring equipment (DME) may be assigned patterns with legs defined in nautical miles rather than minutes. Less frequent turns are more comfortable for passengers and crew. Additionally, left-hand turns may be assigned to some holding patterns if there are airspace restrictions nearby.

In the absence of a radio beacon, the holding fix can be any fixed point in the air, and can be created using two crossing VHF omnidirectional range radials (also called intersection), or it can be at a specific distance from a VOR using a coupled distance measuring equipment. When DME is used, the inbound turn of the racetrack may be permanently defined by distance limits rather than in minutes. Furthermore, in appropriately equipped aircraft, GPS waypoints may be used to define the holding pattern, eliminating the need for ground-based navigational aids entirely.

A hold for visual flight rules aircraft is usually a (smaller) racetrack pattern flown over something easily recognizable on the ground, such as a bridge, highway intersection or lake.

Usage

The primary use of a holding pattern is delaying aircraft that have arrived at their destination but cannot land yet because of traffic congestion, poor weather, or runway unavailability (for instance, during snow removal). Several aircraft may fly the same holding pattern at the same time, separated vertically by 1,000 feet or more. This is generally described as a stack or holding stack. As a rule, new arrivals will be added at the top. The aircraft at the bottom of the stack will be taken out and allowed to make an approach first, after which all aircraft in the stack move down one level, and so on. Air traffic control (ATC) will control the whole process, in some cases using a dedicated controller (called a stack controller) for each individual pattern.

One airport may have several holding patterns; depending on where aircraft arrive from or which runway is in use, or because of vertical airspace limitations.

Since an aircraft with an emergency has priority over all other air traffic, they will always be allowed to bypass the holding pattern and go directly to the airport (if possible). Obviously, this causes more delays for other aircraft already in the stack.[2]

Limiting usage of holdings

Aircraft flying in circles is an inefficient (and hence costly) usage of time and fuel, so measures are taken to limit the amount of holding necessary. Air traffic flow management is used to delay aircraft while grounded at their departure points when delays are expected at their destinations. Despite this regulation, aircraft are required to carry extra fuel specifically for holding, should it become necessary.

Flying a holding pattern

Many aircraft have a specific holding speed published by the manufacturer; this is a lower speed at which the aircraft uses less fuel per hour than normal cruise speeds. A typical holding speed for transport category aircraft is 210 to 265 knots (491 km/h). Holding speeds are a function of aircraft weight at the point of holding. If possible, a holding pattern is flown with flaps and landing gear up to save fuel.

Entry procedures and accurate flying of the holding procedure are essential parts of IFR pilot training, and will always be tested on examination flights.

Modern autopilots, coupled with flight management systems, can enter and fly holding patterns automatically.

Entry procedures

The entry to a holding pattern is often the hardest part for a novice pilot to grasp, and determining and executing the proper entry while simultaneously controlling the aircraft, navigating and communicating with ATC requires practice. There are three standard types of entries: direct, parallel, and offset (teardrop). The proper entry procedure is determined by the angle difference between the direction the aircraft flies to arrive at the beacon and the direction of the inbound leg of the holding pattern.[3]

  • A direct entry is performed exactly as it sounds: the aircraft flies directly to the holding fix, and immediately begins the first turn outbound.
  • In a parallel entry, the aircraft flies to the holding fix, parallels the inbound course for one minute outbound, and then turns back, flies directly to the fix, and continues in the hold from there.
  • In an offset or teardrop entry, the aircraft flies to the holding fix, turns into the protected area, flies for one minute, and then turns back inbound, proceeds to the fix and continues from there.

The parallel and teardrop entry are mirrored in case of a left-hand holding pattern.

Speed limits

Maximum holding speeds are established in order to keep aircraft within the protected holding area during their one-minute inbound and outbound legs. For civil aircraft (not military) in the United States, these airspeeds are:[1]

  • Up to 6,000 ft MSL: 200 KIAS
  • From 6,001 to 14,000 ft MSL: 230 KIAS
  • 14,001 ft MSL and above: 265 KIAS

The ICAO Maximum holding speeds:

  • Up to 14000 ft: 230kts
  • 14000 ft to 20000 ft: 240kts
  • 20000 ft to 34000 ft: 265kts
  • Above 34000 ft: M0.83

With their higher performance characteristics, military aircraft have higher holding speed limits.

In Canada the speeds are:

  • All propeller including turboprop aircraft - MHA to 30,000 ft (9,100 m): 175 kn (324 km/h; 201 mph)*
  • Civilian Jet - MHA to 14,000 ft (4,300 m): 230 kn (426 km/h; 265 mph)*
  • Above 14000 ft: 265 kn (491 km/h; 305 mph)*
Climbing during the hold:
  • turboprop - normal climb speed
  • Jet aircraft - 310 kn (574 km/h; 357 mph)* maximum

MHA – Minimum Holding Altitude

Timing corrections

In order to achieve a one-minute inbound leg, there are two key ways to modify timings:

  • Simple Method: If inbound leg is less than one minute, add the same number of seconds to the outbound leg. If the inbound time is more than one minute, subtract the same number of seconds from the outbound leg.
    • i.e. Inbound time is 0:55 --> Outbound time is 1:05
    • i.e. Inbound time is 1:06 --> Outbound time is 0:54
  • Ideal Method: Subtract 2/3 of the error (in seconds) for inbound legs more than one minute, and add 3/2 of the error (in seconds) for inbound legs of less than one minute. [citation needed]
    • i.e. Inbound time is 0:55 --> Error is 5 seconds. Thus +3/2*5=+7. 1:00+0:07=1:07. Fly 1:07 Outbound.
    • i.e. Inbound time is 1:06 --> Error is 6 seconds. Thus (-2)/3*6=(-4). 1:00-0:04=0:56. Fly 0:56 Outbound.
  • For an initial gouge, add the headwind or subtract the tailwind component speed in knots.
    • i.e. Initial outbound with a tailwind component of 7 knots. Initial outbound 0:53.
    • i.e. Initial outbound with a headwind component of 20 knots. Initial outbound 1:20.

See also

References

  1. ^ a b c FAA-H-8083-15A, Instrument Flying Handbook, Chapter 10. http://www.faa.gov/library/manuals/aviation/instrument_flying_handbook/
  2. ^ 14 CFR 91.3 - Responsibility and authority of the pilot in command. http://www.access.gpo.gov/nara/cfr/waisidx_01/14cfr91_01.html
  3. ^ FAA-H-8083-15A, Instrument Flying Handbook, Standard Entry Procedures, page 10-12. http://www.faa.gov/library/manuals/aviation/instrument_flying_handbook/