Jump to content

Lirequinil: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
CheMoBot (talk | contribs)
Updating {{drugbox}} (changes to verified fields - updated 'ChemSpiderID_Ref', 'StdInChI_Ref', 'StdInChIKey_Ref', 'ChEMBL_Ref', 'KEGG_Ref') per Chem/Drugbox validation (report [[Wikipedia talk:Wi
m Typo fixing, replaced: half life → half-life using AWB (7774)
Line 30: Line 30:
| routes_of_administration =
| routes_of_administration =
}}
}}
'''Lirequinil''' ('''Ro41-3696''') is a [[nonbenzodiazepine]] [[hypnotic]] drug which binds to benzodiazepine sites on the [[GABAA receptor|GABA<sub>A</sub>]] [[Receptor (biochemistry)|receptor]]. In human [[clinical trials]], lirequinil was found to have similar efficacy to [[zolpidem]], with less side effects such as clumsiness and memory impairment. However it was also much slower acting than zolpidem, with peak plasma concentrations not reached until 2.5 hours after oral administration, and its O-desethyl metabolite Ro41-3290 is also active with a half life of 8 hours.<ref name="pmid8522640">{{cite journal |author=Dingemanse J, Bury M, Roncari G, Zell M, Gieschke R, Gaillard AW, Odink J, van Brummelen P |title=Pharmacokinetics and pharmacodynamics of Ro 41-3696, a novel nonbenzodiazepine hypnotic |journal=Journal of Clinical Pharmacology |volume=35 |issue=8 |pages=821–9 |year=1995 |month=August |pmid=8522640 |doi= |url=}}</ref><ref name="pmid8848532">{{cite journal |author=Dingemanse J, Bury M, Bock J, Joubert P |title=Comparative pharmacodynamics of Ro 41-3696, a new hypnotic, and zolpidem after night-time administration to healthy subjects |journal=Psychopharmacology |volume=122 |issue=2 |pages=169–74 |year=1995 |month=November |pmid=8848532 |doi= |url=}}</ref><ref name="pmid11095577">{{cite journal |author=Dingemanse J, Bury M, Hussain Y, van Giersbergen P |title=Comparative tolerability, pharmacodynamics, and pharmacokinetics of a metabolite of a quinolizinone hypnotic and zolpidem in healthy subjects |journal=Drug Metabolism and Disposition: the Biological Fate of Chemicals |volume=28 |issue=12 |pages=1411–6 |year=2000 |month=December |pmid=11095577 |doi= |url=}}</ref><ref name="pmid11307042">{{cite journal |author=Dingemanse J, Pedrazzetti E, van Giersbergen PL |title=Multiple-dose tolerability, pharmacodynamics, and pharmacokinetics of the quinolizinone hypnotic Ro 41-3696 in elderly subjects |journal=Clinical Neuropharmacology |volume=24 |issue=2 |pages=82–90 |year=2001 |pmid=11307042 |doi= |url=}}</ref> This meant that while effective as a hypnotic, lirequinil failed to prove superior to zolpidem due to producing more next-day sedation, and it has not been adopted for clinical use.
'''Lirequinil''' ('''Ro41-3696''') is a [[nonbenzodiazepine]] [[hypnotic]] drug which binds to benzodiazepine sites on the [[GABAA receptor|GABA<sub>A</sub>]] [[Receptor (biochemistry)|receptor]]. In human [[clinical trials]], lirequinil was found to have similar efficacy to [[zolpidem]], with less side effects such as clumsiness and memory impairment. However it was also much slower acting than zolpidem, with peak plasma concentrations not reached until 2.5 hours after oral administration, and its O-desethyl metabolite Ro41-3290 is also active with a half-life of 8 hours.<ref name="pmid8522640">{{cite journal |author=Dingemanse J, Bury M, Roncari G, Zell M, Gieschke R, Gaillard AW, Odink J, van Brummelen P |title=Pharmacokinetics and pharmacodynamics of Ro 41-3696, a novel nonbenzodiazepine hypnotic |journal=Journal of Clinical Pharmacology |volume=35 |issue=8 |pages=821–9 |year=1995 |month=August |pmid=8522640 |doi= |url=}}</ref><ref name="pmid8848532">{{cite journal |author=Dingemanse J, Bury M, Bock J, Joubert P |title=Comparative pharmacodynamics of Ro 41-3696, a new hypnotic, and zolpidem after night-time administration to healthy subjects |journal=Psychopharmacology |volume=122 |issue=2 |pages=169–74 |year=1995 |month=November |pmid=8848532 |doi= |url=}}</ref><ref name="pmid11095577">{{cite journal |author=Dingemanse J, Bury M, Hussain Y, van Giersbergen P |title=Comparative tolerability, pharmacodynamics, and pharmacokinetics of a metabolite of a quinolizinone hypnotic and zolpidem in healthy subjects |journal=Drug Metabolism and Disposition: the Biological Fate of Chemicals |volume=28 |issue=12 |pages=1411–6 |year=2000 |month=December |pmid=11095577 |doi= |url=}}</ref><ref name="pmid11307042">{{cite journal |author=Dingemanse J, Pedrazzetti E, van Giersbergen PL |title=Multiple-dose tolerability, pharmacodynamics, and pharmacokinetics of the quinolizinone hypnotic Ro 41-3696 in elderly subjects |journal=Clinical Neuropharmacology |volume=24 |issue=2 |pages=82–90 |year=2001 |pmid=11307042 |doi= |url=}}</ref> This meant that while effective as a hypnotic, lirequinil failed to prove superior to zolpidem due to producing more next-day sedation, and it has not been adopted for clinical use.





Revision as of 01:46, 15 July 2011

Lirequinil
Clinical data
ATC code
  • none
Identifiers
  • 10-chloro-1-[(3S)-3-ethoxypyrrolidine-1-carbonyl]-3-phenyl-6,7-dihydrobenzo[a]quinolizin-4-one
CAS Number
PubChem CID
UNII
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC26H25ClN2O3
Molar mass448.941 g/mol g·mol−1
3D model (JSmol)
  • CCO[C@H]1CCN(C1)C(=O)C2=C3C4=C(CCN3C(=O)C(=C2)C5=CC=CC=C5)C=CC(=C4)Cl
 ☒NcheckY (what is this?)  (verify)

Lirequinil (Ro41-3696) is a nonbenzodiazepine hypnotic drug which binds to benzodiazepine sites on the GABAA receptor. In human clinical trials, lirequinil was found to have similar efficacy to zolpidem, with less side effects such as clumsiness and memory impairment. However it was also much slower acting than zolpidem, with peak plasma concentrations not reached until 2.5 hours after oral administration, and its O-desethyl metabolite Ro41-3290 is also active with a half-life of 8 hours.[1][2][3][4] This meant that while effective as a hypnotic, lirequinil failed to prove superior to zolpidem due to producing more next-day sedation, and it has not been adopted for clinical use.


Active metabolite Ro41-3290

References

  1. ^ Dingemanse J, Bury M, Roncari G, Zell M, Gieschke R, Gaillard AW, Odink J, van Brummelen P (1995). "Pharmacokinetics and pharmacodynamics of Ro 41-3696, a novel nonbenzodiazepine hypnotic". Journal of Clinical Pharmacology. 35 (8): 821–9. PMID 8522640. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  2. ^ Dingemanse J, Bury M, Bock J, Joubert P (1995). "Comparative pharmacodynamics of Ro 41-3696, a new hypnotic, and zolpidem after night-time administration to healthy subjects". Psychopharmacology. 122 (2): 169–74. PMID 8848532. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  3. ^ Dingemanse J, Bury M, Hussain Y, van Giersbergen P (2000). "Comparative tolerability, pharmacodynamics, and pharmacokinetics of a metabolite of a quinolizinone hypnotic and zolpidem in healthy subjects". Drug Metabolism and Disposition: the Biological Fate of Chemicals. 28 (12): 1411–6. PMID 11095577. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  4. ^ Dingemanse J, Pedrazzetti E, van Giersbergen PL (2001). "Multiple-dose tolerability, pharmacodynamics, and pharmacokinetics of the quinolizinone hypnotic Ro 41-3696 in elderly subjects". Clinical Neuropharmacology. 24 (2): 82–90. PMID 11307042.{{cite journal}}: CS1 maint: multiple names: authors list (link)