Lagrangian relaxation: Difference between revisions
Nealeyoung (talk | contribs) m Undid revision 442403907 by Nealeyoung (talk) |
m Various citation cleanup (identifiers mostly) using AWB |
||
Line 99: | Line 99: | ||
A Lagrangian Relaxation algorithm thus proceeds to explore the range of feasible <math>\lambda</math> values while seeking to minimize the result returned by the inner <math>P</math> problem. Each value returned by <math>P</math> is a candidate upper bound to the problem, the smallest of which is kept as the best upper bound. If we additionally employ a heuristic, probably seeded by the <math>\bar{x}</math> values returned by <math>P</math>, to find feasible solutions to the original problem, then we can iterate until the best upper bound and the cost of the best feasible solution converge to a desired tolerance. |
A Lagrangian Relaxation algorithm thus proceeds to explore the range of feasible <math>\lambda</math> values while seeking to minimize the result returned by the inner <math>P</math> problem. Each value returned by <math>P</math> is a candidate upper bound to the problem, the smallest of which is kept as the best upper bound. If we additionally employ a heuristic, probably seeded by the <math>\bar{x}</math> values returned by <math>P</math>, to find feasible solutions to the original problem, then we can iterate until the best upper bound and the cost of the best feasible solution converge to a desired tolerance. |
||
==References== |
==References== |
||
===Books=== |
===Books=== |
||
* {{cite book | author=[[Ravindra K. Ahuja]], [[Thomas L. Magnanti]], and [[James B. Orlin]] | title= Network Flows: Theory, Algorithms and Applications | publisher=Prentice Hall | year=1993 | isbn=0-13-617549-X }} |
* {{cite book | author=[[Ravindra K. Ahuja]], [[Thomas L. Magnanti]], and [[James B. Orlin]] | title= Network Flows: Theory, Algorithms and Applications | publisher=Prentice Hall | year=1993 | isbn=0-13-617549-X }} |
||
* Bertsekas, Dimitri P. (1999). ''Nonlinear Programming: 2nd Edition.'' Athena Scientific. ISBN 1-886529-00-0. |
* Bertsekas, Dimitri P. (1999). ''Nonlinear Programming: 2nd Edition.'' Athena Scientific. ISBN 1-886529-00-0. |
||
* {{cite book|last1=Bonnans|first1=J. Frédéric|last2=Gilbert|first2=J. Charles|last3=Lemaréchal|first3=Claude|last4=Sagastizábal|first4=Claudia A.|title=Numerical optimization: Theoretical and practical aspects|url=http://www.springer.com/mathematics/applications/book/978-3-540-35445-1|edition=Second revised ed. of translation of 1997 <!-- ''Optimisation numérique: Aspects théoriques et pratiques'' --> French| series=Universitext|publisher=Springer-Verlag|location=Berlin|year=2006|pages=xiv+490|isbn=3-540-35445-X|doi=10.1007/978-3-540-35447-5| |
* {{cite book|last1=Bonnans|first1=J. Frédéric|last2=Gilbert|first2=J. Charles|last3=Lemaréchal|first3=Claude|last4=Sagastizábal|first4=Claudia A.|title=Numerical optimization: Theoretical and practical aspects|url=http://www.springer.com/mathematics/applications/book/978-3-540-35445-1|edition=Second revised ed. of translation of 1997 <!-- ''Optimisation numérique: Aspects théoriques et pratiques'' --> French| series=Universitext|publisher=Springer-Verlag|location=Berlin|year=2006|pages=xiv+490|isbn=3-540-35445-X|doi=10.1007/978-3-540-35447-5|mr=2265882|unused_data=authorlink3=Claude Lemaréchal}} |
||
* {{cite book|last1=Hiriart-Urruty|first1=Jean-Baptiste|last2=Lemaréchal|first2=Claude|title=Convex analysis and minimization algorithms, Volume I: Fundamentals|series=Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]|volume=305|publisher=Springer-Verlag|location=Berlin|year=1993|pages=xviii+417|isbn=3-540-56850-6|{{MR|1261420}}||unused_data=authorlink2=Claude Lemaréchal}} |
* {{cite book|last1=Hiriart-Urruty|first1=Jean-Baptiste|last2=Lemaréchal|first2=Claude|title=Convex analysis and minimization algorithms, Volume I: Fundamentals|series=Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]|volume=305|publisher=Springer-Verlag|location=Berlin|year=1993|pages=xviii+417|isbn=3-540-56850-6|{{MR|1261420}}||unused_data=authorlink2=Claude Lemaréchal}} |
||
*{{cite book|last1=Hiriart-Urruty|first1=Jean-Baptiste|last2=Lemaréchal|first2=Claude|chapter=14 Duality for Practitioners|title=Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods|series=Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]|volume=306|publisher=Springer-Verlag|location=Berlin|year=1993|pages=xviii+346|isbn=3-540-56852-2|{{MR|1295240}}||unused_data=authorlink2=Claude Lemaréchal}} |
*{{cite book|last1=Hiriart-Urruty|first1=Jean-Baptiste|last2=Lemaréchal|first2=Claude|chapter=14 Duality for Practitioners|title=Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods|series=Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]|volume=306|publisher=Springer-Verlag|location=Berlin|year=1993|pages=xviii+346|isbn=3-540-56852-2|{{MR|1295240}}||unused_data=authorlink2=Claude Lemaréchal}} |
||
*{{cite book|last=Lasdon|first=Leon S.|title=Optimization theory for large systems|publisher=Dover Publications, Inc.|location=Mineola, New York|year=2002|edition=reprint of the 1970 Macmillan|pages=xiii+523| |
*{{cite book|last=Lasdon|first=Leon S.|title=Optimization theory for large systems|publisher=Dover Publications, Inc.|location=Mineola, New York|year=2002|edition=reprint of the 1970 Macmillan|pages=xiii+523|mr=1888251|ref=harv}} |
||
* {{cite book|last=Lemaréchal|first=Claude|chapter=Lagrangian relaxation|pages=112–156|title=Computational combinatorial optimization: Papers from the Spring School held in Schloß Dagstuhl, May 15–19, 2000|editor=Michael Jünger and Denis Naddef|series=Lecture Notes in Computer Science|volume=2241|publisher=Springer-Verlag|location=Berlin|year=2001|isbn=3-540-42877-1| |
* {{cite book|last=Lemaréchal|first=Claude|chapter=Lagrangian relaxation|pages=112–156|title=Computational combinatorial optimization: Papers from the Spring School held in Schloß Dagstuhl, May 15–19, 2000|editor=Michael Jünger and Denis Naddef|series=Lecture Notes in Computer Science|volume=2241|publisher=Springer-Verlag|location=Berlin|year=2001|isbn=3-540-42877-1|mr=1900016|doi=10.1007/3-540-45586-8_4|authorlink=Claude Lemaréchal|ref=harv}} |
||
* {{cite book|last=Minoux|first=M.|authorlink=Michel Minoux|title=Mathematical programming: Theory and algorithms|note=With a foreword by Egon Balas|edition=Translated by Steven Vajda from the (1983 Paris: Dunod) French|publisher=A Wiley-Interscience Publication. John Wiley & Sons, Ltd.|location=Chichester|year=1986|pages=xxviii+489|isbn=0-471-90170-9|mr=868279|ref=harv|id=(2008 Second ed., in French: ''Programmation mathématique: Théorie et algorithmes''. Editions Tec & Doc, Paris, 2008. xxx+711 pp. {{ISBN-13|978-2-7430-1000-3}} |
* {{cite book|last=Minoux|first=M.|authorlink=Michel Minoux|title=Mathematical programming: Theory and algorithms|note=With a foreword by Egon Balas|edition=Translated by Steven Vajda from the (1983 Paris: Dunod) French|publisher=A Wiley-Interscience Publication. John Wiley & Sons, Ltd.|location=Chichester|year=1986|pages=xxviii+489|isbn=0-471-90170-9|mr=868279|ref=harv|id=(2008 Second ed., in French: ''Programmation mathématique: Théorie et algorithmes''. Editions Tec & Doc, Paris, 2008. xxx+711 pp. {{ISBN-13|978-2-7430-1000-3}} {{MR|2571910}})}} |
||
===Articles=== |
===Articles=== |
||
* {{cite journal|first=Hugh, III|last=Everett|authorlink=Hugh Everett|url=http://or.journal.informs.org/cgi/reprint/11/3/399|title=Generalized Lagrange multiplier method for solving problems of optimum allocation of resources|doi=10.1287/opre.11.3.39|journal=Operations Research|volume=11|year=1963|pages=399–417|mr=152360|jstor=168028|ref=harv|issue=3}} |
* {{cite journal|first=Hugh, III|last=Everett|authorlink=Hugh Everett|url=http://or.journal.informs.org/cgi/reprint/11/3/399|title=Generalized Lagrange multiplier method for solving problems of optimum allocation of resources|doi=10.1287/opre.11.3.39|journal=Operations Research|volume=11|year=1963|pages=399–417|mr=152360|jstor=168028|ref=harv|issue=3}} |
||
*{{cite journal|last1=Kiwiel|first1=Krzysztof C.|last2=Larsson |first2=Torbjörn|last3=Lindberg|first3=P. O.|title=Lagrangian relaxation via ballstep subgradient methods|mr=2348241|journal=Mathematics of Operations Research|volume=32|year=2007|url=http://mor.journal.informs.org/cgi/content/abstract/32/3/669|issue=3|pages=669–686|month=August|doi=10.1287/moor.1070.0261|ref=harv}} |
*{{cite journal|last1=Kiwiel|first1=Krzysztof C.|last2=Larsson |first2=Torbjörn|last3=Lindberg|first3=P. O.|title=Lagrangian relaxation via ballstep subgradient methods|mr=2348241|journal=Mathematics of Operations Research|volume=32|year=2007|url=http://mor.journal.informs.org/cgi/content/abstract/32/3/669|issue=3|pages=669–686|month=August|doi=10.1287/moor.1070.0261|ref=harv}} |
||
{{DEFAULTSORT:Lagrangian Relaxation}} |
{{DEFAULTSORT:Lagrangian Relaxation}} |
Revision as of 06:37, 31 August 2011
In the field of mathematical optimization, Lagrangian relaxation is a relaxation method which approximates a difficult problem of constrained optimization by a simpler problem. A solution to the relaxed problem is an approximate solution to the original problem, and provides useful information.
The method penalizes violations of inequality constraints using a Lagrangian multiplier, which imposes a cost on violations. When the Lagrangian multiplier is nonnegative and nonzero, some inequality constraint can be violated. In practice, the Lagrangian relaxed problem can be solved more easily than the original problem. The problem of maximizing the Lagrangian function of the dual variables (the Lagrangian multipliers) is the Lagrangian dual problem.
Mathematical description
Given a linear programming problem and of the following form:
max s.t.
If we split the constraints in such that , and we may write the system:
max s.t. (1) (2)
We may introduce the constraint (2) into the objective:
max s.t. (1)
If we let be nonnegative weights, we get penalized if we violate the constraint (2), and we are also rewarded if we satisfy the constraint strictly. The above system is called the Lagrangian Relaxation of our original problem.
The LR solution as a bound
Of particular use is the property that for any fixed set of values, the optimal result to the Lagrangian Relaxation problem will be no smaller than the optimal result to the original problem. To see this, let be the optimal solution to the original problem, and let be the optimal solution to the Lagrangian Relaxation. We can then see that
The first inequality is true because is feasible in the original problem and the second inequality is true because is the optimal solution to the Lagrangian Relaxation.
Iterating towards a solution of the original problem
The above inequality tells us that if we minimize the maximum value we obtain from the relaxed problem, we obtain a tighter limit on the objective value of our original problem. Thus we can address the original problem by instead exploring the partially dualized problem
min s.t.
where we define as
max s.t. (1)
A Lagrangian Relaxation algorithm thus proceeds to explore the range of feasible values while seeking to minimize the result returned by the inner problem. Each value returned by is a candidate upper bound to the problem, the smallest of which is kept as the best upper bound. If we additionally employ a heuristic, probably seeded by the values returned by , to find feasible solutions to the original problem, then we can iterate until the best upper bound and the cost of the best feasible solution converge to a desired tolerance.
References
Books
- Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin (1993). Network Flows: Theory, Algorithms and Applications. Prentice Hall. ISBN 0-13-617549-X.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - Bertsekas, Dimitri P. (1999). Nonlinear Programming: 2nd Edition. Athena Scientific. ISBN 1-886529-00-0.
- Bonnans, J. Frédéric; Gilbert, J. Charles; Lemaréchal, Claude; Sagastizábal, Claudia A. (2006). Numerical optimization: Theoretical and practical aspects. Universitext (Second revised ed. of translation of 1997 French ed.). Berlin: Springer-Verlag. pp. xiv+490. doi:10.1007/978-3-540-35447-5. ISBN 3-540-35445-X. MR 2265882.
{{cite book}}
: Unknown parameter|unused_data=
ignored (help) - Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude (1993). Convex analysis and minimization algorithms, Volume I: Fundamentals. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Vol. 305. Berlin: Springer-Verlag. pp. xviii+417. ISBN 3-540-56850-6.
{{cite book}}
: Cite has empty unknown parameter:|2=
(help); Missing pipe in:|unused_data=
(help); Text "MR1261420" ignored (help) - Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude (1993). "14 Duality for Practitioners". Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Vol. 306. Berlin: Springer-Verlag. pp. xviii+346. ISBN 3-540-56852-2.
{{cite book}}
: Cite has empty unknown parameter:|2=
(help); Missing pipe in:|unused_data=
(help); Text "MR1295240" ignored (help) - Lasdon, Leon S. (2002). Optimization theory for large systems (reprint of the 1970 Macmillan ed.). Mineola, New York: Dover Publications, Inc. pp. xiii+523. MR 1888251.
{{cite book}}
: Invalid|ref=harv
(help) - Lemaréchal, Claude (2001). "Lagrangian relaxation". In Michael Jünger and Denis Naddef (ed.). Computational combinatorial optimization: Papers from the Spring School held in Schloß Dagstuhl, May 15–19, 2000. Lecture Notes in Computer Science. Vol. 2241. Berlin: Springer-Verlag. pp. 112–156. doi:10.1007/3-540-45586-8_4. ISBN 3-540-42877-1. MR 1900016.
{{cite book}}
: Invalid|ref=harv
(help) - Minoux, M. (1986). Mathematical programming: Theory and algorithms (Translated by Steven Vajda from the (1983 Paris: Dunod) French ed.). Chichester: A Wiley-Interscience Publication. John Wiley & Sons, Ltd. pp. xxviii+489. ISBN 0-471-90170-9. MR 0868279. (2008 Second ed., in French: Programmation mathématique: Théorie et algorithmes. Editions Tec & Doc, Paris, 2008. xxx+711 pp. Template:ISBN-13 MR2571910).
{{cite book}}
: Invalid|ref=harv
(help); Unknown parameter|note=
ignored (help)
Articles
- Everett, Hugh, III (1963). "Generalized Lagrange multiplier method for solving problems of optimum allocation of resources". Operations Research. 11 (3): 399–417. doi:10.1287/opre.11.3.39. JSTOR 168028. MR 0152360.
{{cite journal}}
: Invalid|ref=harv
(help)CS1 maint: multiple names: authors list (link) - Kiwiel, Krzysztof C.; Larsson, Torbjörn; Lindberg, P. O. (2007). "Lagrangian relaxation via ballstep subgradient methods". Mathematics of Operations Research. 32 (3): 669–686. doi:10.1287/moor.1070.0261. MR 2348241.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|month=
ignored (help)