Jump to content

Hellinger integral: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Hellinger distance
Line 4: Line 4:


*{{Citation | last1=Hellinger | first1=E. | title=Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002166941 | year=1909 | journal= J. Reine Angew. Math | volume=136 | pages=210–271}}
*{{Citation | last1=Hellinger | first1=E. | title=Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002166941 | year=1909 | journal= J. Reine Angew. Math | volume=136 | pages=210–271}}
{{Citation | last1=Hobson | first1=E. W. | title=The theory of functions of a real variable and the theory of Fourier's series. Vol. I | url=http://books.google.com/books?id=LCc9AAAAIAAJ | publisher=[[Dover Publications]] | location=New York | id={{MR|0092828}} | year=1958}}

*{{eom|id=h/h046900|first=I.A.|last= Vinogradova}}
*{{eom|id=h/h046900|first=I.A.|last= Vinogradova}}
{{integral}}
{{integral}}

Revision as of 02:14, 14 October 2011

In mathematics, the Hellinger integral is an integral introduced by Hellinger (1909) that is a special case of the Kolmogorov integral. It is used to define the Hellinger distancein probability theory.

References

  • Hellinger, E. (1909), "Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen", J. Reine Angew. Math, 136: 210–271

Hobson, E. W. (1958), The theory of functions of a real variable and the theory of Fourier's series. Vol. I, New York: Dover Publications, MR0092828