Jump to content

Log-Cauchy distribution: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
CDF
Line 57: Line 57:
Trade, Human Capital and Technology Spillovers: An Industry Level Analysis|author=Wang, Y.|page=14|publisher=Carleton University|accessdate=2011-10-19}}</ref>
Trade, Human Capital and Technology Spillovers: An Industry Level Analysis|author=Wang, Y.|page=14|publisher=Carleton University|accessdate=2011-10-19}}</ref>


The Log-Cauchy distribution is [[Infinite divisibility (probability)|infinitely divisible]] for some parameters but not for others.<ref>{{cite web|title=On the Levy Measure of the Lognormal and LogCauchy Distributions|url=http://resources.metapress.com/pdf-preview.axd?code=gn16hw202rxh4q1g&size=largest|accessdate=2011-10-18|author=Bondesson, L.|journal=Methodology and Computing in Applied Probability|year=2003|pages=243–256|publisher=Kluwer Academic Publications}}</ref> Like the [[lognormal distribution]], [[log-t distribution|log-t or log-Student distribution]] and [[Weibull distribution]], the log-Cauchy distribution is a special case of the [[generalized beta distribution of the second kind]].<ref>{{cite book|title=Return distributions in finance|author=Knight, J. & Satchell, S.|page=153|year=2001|publisher=Butterworth-Heinemann|isbn=9780750647519}}</ref><ref>{{cite book|title=Market consistency: model calibration in imperfect markets|author=Kemp, M.|page=|year=2009|publisher=Wiley|isbn=9780470770887}}</ref> The log-Cauchy is actually a special case of the log-t distribution, similar to the Cauchy distribution being a special case of the [[Student's t distribution]] with 1 degree of freedom.<ref>{{cite book|title=Statistical distributions in scientific work: proceedings of the NATO Advanced Study Institute|author=MacDonald, J.B.|chapter=Measuring Income Inequality|page=169|editor=Taillie, C., Patil, G.P. & Baldessari, B.|year=1981|publisher=Springer|isbn=9789027713346}}</ref><ref name=kleiber>{{cite book|title=Statistical Size Distributions in Economics and Actuarial Science|author=Kleiber, C. & Kotz, S.|pages=101–102, 110|year=2003|publisher=Wiley|isbn=978-0471150640}}</ref>
The log-Cauchy distribution is [[Infinite divisibility (probability)|infinitely divisible]] for some parameters but not for others.<ref>{{cite web|title=On the Levy Measure of the Lognormal and LogCauchy Distributions|url=http://resources.metapress.com/pdf-preview.axd?code=gn16hw202rxh4q1g&size=largest|accessdate=2011-10-18|author=Bondesson, L.|journal=Methodology and Computing in Applied Probability|year=2003|pages=243–256|publisher=Kluwer Academic Publications}}</ref> Like the [[lognormal distribution]], [[log-t distribution|log-t or log-Student distribution]] and [[Weibull distribution]], the log-Cauchy distribution is a special case of the [[generalized beta distribution of the second kind]].<ref>{{cite book|title=Return distributions in finance|author=Knight, J. & Satchell, S.|page=153|year=2001|publisher=Butterworth-Heinemann|isbn=9780750647519}}</ref><ref>{{cite book|title=Market consistency: model calibration in imperfect markets|author=Kemp, M.|page=|year=2009|publisher=Wiley|isbn=9780470770887}}</ref> The log-Cauchy is actually a special case of the log-t distribution, similar to the Cauchy distribution being a special case of the [[Student's t distribution]] with 1 degree of freedom.<ref>{{cite book|title=Statistical distributions in scientific work: proceedings of the NATO Advanced Study Institute|author=MacDonald, J.B.|chapter=Measuring Income Inequality|page=169|editor=Taillie, C., Patil, G.P. & Baldessari, B.|year=1981|publisher=Springer|isbn=9789027713346}}</ref><ref name=kleiber>{{cite book|title=Statistical Size Distributions in Economics and Actuarial Science|author=Kleiber, C. & Kotz, S.|pages=101–102, 110|year=2003|publisher=Wiley|isbn=978-0471150640}}</ref>


Since the Cauchy distribution is a [[stable distribution]], the log-Cauchy distribution is a logstable distribution.<ref>{{cite journal|title=Distribution function values for logstable distributions|url=http://www.sciencedirect.com/science/article/pii/089812219390128I|doi=10.1016/0898-1221(93)90128-I|author=Panton, D.B.|accessdate=2011-10-18|date=May 1993|pages=17–24|volume=25|issue=9|journal=Computers & Mathematics with Applications}}</ref> Logstable distributions have [[pole (complex analysis)|poles]] at x=0.<ref name=kleiber/>
Since the Cauchy distribution is a [[stable distribution]], the log-Cauchy distribution is a logstable distribution.<ref>{{cite journal|title=Distribution function values for logstable distributions|url=http://www.sciencedirect.com/science/article/pii/089812219390128I|doi=10.1016/0898-1221(93)90128-I|author=Panton, D.B.|accessdate=2011-10-18|date=May 1993|pages=17–24|volume=25|issue=9|journal=Computers & Mathematics with Applications}}</ref> Logstable distributions have [[pole (complex analysis)|poles]] at x=0.<ref name=kleiber/>

Revision as of 17:20, 2 November 2011

Log-Cauchy
Probability density function
Log-Cauchy density function for values of '"`UNIQ--postMath-00000001-QINU`"'
Cumulative distribution function
Log-Cauchy cumulative distribution function for values of '"`UNIQ--postMath-00000002-QINU`"'
Parameters (real)
(real)
Support
PDF
CDF
Mean does not exist
Median
Variance infinite
Skewness does not exist
Excess kurtosis does not exist
MGF does not exist

In probability theory, a log-Cauchy distribution is a probability distribution of a random variable whose logarithm is distributed in accordance with a Cauchy distribution. If X is a random variable with a Cauchy distribution, then Y = exp(X) has a log-Cauchy distribution; likewise, if Y has a log-Cauchy distribution, then X = log(Y) has a Cauchy distribution.[1]

Characterization

Probability density function

The log-Cauchy distribution has the probability density function:

where is a real number and .[1][2] If is known, the scale parameter is .[1] and correspond to the location parameter and scale parameter of the associated Cauchy distribution.[1][3] Some authors define and as the location and scale parameters, respectively, of the log-Cauchy distribution.[3]

For and , corresponding to a standard Cauchy distribution, the probability density function reduces to:[4]

Cumulative distribution function

The cumulative distribution function (cdf) when and is:[4]


Survival function

The survival function when and is:[4]

Hazard rate

The hazard rate when and is:[4]

The hazard rate deceases at the beginning and at the end of the distribution, but there may be an interval over which the hazard rate increases.[4]

Properties

The log-Cauchy distribution is an example of a heavy-tailed distribution.[5] Some authors regard it as a "super-heavy tailed" distribution, because it has a heavier tail than a Pareto distribution-type heavy tail, i.e., it has a logarithmically decaying tail.[5][6] As with the Cauchy distribution, none of the non-trivial moments of the log-Cauchy distribution are finite.[4] The mean is a moment so the log-Cauchy distribution does not have a defined mean or standard deviation.[7][8]

The log-Cauchy distribution is infinitely divisible for some parameters but not for others.[9] Like the lognormal distribution, log-t or log-Student distribution and Weibull distribution, the log-Cauchy distribution is a special case of the generalized beta distribution of the second kind.[10][11] The log-Cauchy is actually a special case of the log-t distribution, similar to the Cauchy distribution being a special case of the Student's t distribution with 1 degree of freedom.[12][13]

Since the Cauchy distribution is a stable distribution, the log-Cauchy distribution is a logstable distribution.[14] Logstable distributions have poles at x=0.[13]

Estimating parameters

The median of the natural logarithms of a sample is a robust estimator of .[1] The median absolute deviation of the natural logarithms of a sample is a robust estimator of .[1]

Uses

In Bayesian statistics, the log-Cauchy distribution can be used to approximate the improper Jeffreys-Haldane density, 1/k, which is sometimes suggested as the prior distribution for k where k is a positive parameter being estimated.[15][16] The log-Cauchy distribution can be used to model certain survival processes where significant outliers or extreme results may occur.[2][3][17] An example of a process where a log-Cauchy distribution may be an appropriate model is the time between someone becoming infected with HIV virus and showing symptoms of the disease, which may be very long for some people.[3] It has also been proposed as a model for species abundance patterns.[18]

References

  1. ^ a b c d e f Olive, D.J. (June 23, 2008). "Applied Robust Statistics" (PDF). Southern Illinois University. p. 86. Retrieved 2011-10-18.
  2. ^ a b Lindsey, J.K. (2004). Statistical analysis of stochastic processes in time. Cambridge University Press. p. 33, 50, 56, 62, 145. ISBN 9780521837415.
  3. ^ a b c d Mode, C.J. & Sleeman, C.K. (2000). Stochastic processes in epidemiology: HIV/AIDS, other infectious diseases. World Scientific. pp. 29–37. ISBN 9789810240974.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. ^ a b c d e f Marshall, A.W. & Olkin, I. (2007). Life distributions: structure of nonparametric, semiparametric, and parametric families. Springer. pp. 443–444. ISBN 9780387203331.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. ^ a b Falk, M., Hüsler, J. & Reiss, R. (2010). "Laws of Small Numbers: Extremes and Rare Events". Springer. p. 80. ISBN 9783034800082. {{cite web}}: Missing or empty |url= (help)CS1 maint: multiple names: authors list (link)
  6. ^ Alves, M.I.F., de Haan, L. & Neves, C. (March 10, 2006). "Statistical inference for heavy and super-heavy tailed distributions" (PDF).{{cite web}}: CS1 maint: multiple names: authors list (link)
  7. ^ "Moment". Mathworld. Retrieved 2011-10-19.
  8. ^ Wang, Y. "Trade, Human Capital and Technology Spillovers: An Industry Level Analysis". Carleton University. p. 14. {{cite web}}: |access-date= requires |url= (help); Missing or empty |url= (help)
  9. ^ Bondesson, L. (2003). "On the Levy Measure of the Lognormal and LogCauchy Distributions". Methodology and Computing in Applied Probability. Kluwer Academic Publications. pp. 243–256. Retrieved 2011-10-18.
  10. ^ Knight, J. & Satchell, S. (2001). Return distributions in finance. Butterworth-Heinemann. p. 153. ISBN 9780750647519.{{cite book}}: CS1 maint: multiple names: authors list (link)
  11. ^ Kemp, M. (2009). Market consistency: model calibration in imperfect markets. Wiley. ISBN 9780470770887.
  12. ^ MacDonald, J.B. (1981). "Measuring Income Inequality". In Taillie, C., Patil, G.P. & Baldessari, B. (ed.). Statistical distributions in scientific work: proceedings of the NATO Advanced Study Institute. Springer. p. 169. ISBN 9789027713346.{{cite book}}: CS1 maint: multiple names: editors list (link)
  13. ^ a b Kleiber, C. & Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Science. Wiley. pp. 101–102, 110. ISBN 978-0471150640.{{cite book}}: CS1 maint: multiple names: authors list (link)
  14. ^ Panton, D.B. (May 1993). "Distribution function values for logstable distributions". Computers & Mathematics with Applications. 25 (9): 17–24. doi:10.1016/0898-1221(93)90128-I. Retrieved 2011-10-18.
  15. ^ Good, I.J. (1983). Good thinking: the foundations of probability and its applications. University of Minnesota Press. p. 102. ISBN 9780816611423.
  16. ^ Chen, M. (2010). Frontiers of Statistical Decision Making and Bayesian Analysis. Springer. p. 12. ISBN 9781441969439.
  17. ^ Lindsey, J.K., Jones, B. & Jarvis, P. (September 2001). "Some statistical issues in modelling pharmacokinetic data". Statistics in Medicine. 20 (17–18): 2775–278. Retrieved 2011-10-19. {{cite journal}}: Text "10.1002/sim.742" ignored (help)CS1 maint: multiple names: authors list (link)
  18. ^ Zuo-Yun, Y.; et al. (June 2005). "LogCauchy, log-sech and lognormal distributions of species abundances in forest communities". Ecological Modelling. 184 (2–4): 329–340. doi:10.1016/j.ecolmodel.2004.10.011. Retrieved 2011-10-18. {{cite journal}}: Explicit use of et al. in: |author= (help)