Zero-energy building: Difference between revisions
No edit summary |
|||
Line 281: | Line 281: | ||
[[ru:Активный дом]] |
[[ru:Активный дом]] |
||
[[fi:Nollaenergiatalo]] |
[[fi:Nollaenergiatalo]] |
||
[[zh:零碳建築]] |
Revision as of 06:36, 28 November 2011
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (October 2011) |
A zero-energy building, also known as a zero net energy (ZNE) building, Net-Zero Energy Building (NZEB), or Net Zero Building, is a popular term to describe a building with zero net energy consumption and zero carbon emissions annually.[1] Zero energy buildings can be independent from the energy grid supply. Energy can be harvested on-site—usually through a combination of energy producing technologies like Solar and Wind—while reducing the overall use of energy with extremely efficient HVAC and Lighting technologies. The zero-energy design principle is becoming more practical to adopt due to the increasing costs of traditional fossil fuels and their negative impact on the planet's climate and ecological balance.
The zero net energy consumption principle is gaining considerable interest as renewable energy harvesting is a means to cut greenhouse gas emissions. Traditional building consumes 40% of the total fossil energy in the US and European Union.[2][3]
Modern evolution
The development of modern zero-energy buildings became possible not only through the progress made in new construction technologies and techniques[citation needed], but it has also been significantly improved by academic research on traditional and experimental buildings, which collected precise energy performance data. Today's advanced computer models can show the efficacy of engineering design decisions.
Energy use can be measured in different ways (relating to cost, energy, or carbon emissions) and, irrespective of the definition used, different views are taken on the relative importance of energy harvest and energy conservation to achieve a net energy balance. Although zero energy buildings remain uncommon in developed countries, they are gaining importance and popularity. The zero net energy approach has potential to reduce carbon emissions, and reduce dependence on fossil fuels.
A building approaching zero net energy use may be called a "near-zero energy building" or "ultra-low energy house". Buildings that produce a surplus of energy during a portion of the year may be known as "energy-plus buildings".
If the building is located in an area that requires heating or cooling throughout parts of the year, it is easier to achieve zero net energy consumption when the available living space is kept small.
Definitions
Despite sharing the name "zero net energy", there are several definitions of what the term means in practice, with a particular difference in usage between North America and Europe.[4]
- Zero net site energy use
- In this type of ZNE, the amount of energy provided by on-site renewable energy sources is equal to the amount of energy used by the building. In the United States, “zero net energy building” generally refers to this type of building.
- Zero net source energy use
- This ZNE generates the same amount of energy as is used, including the energy used to transport the energy to the building. This type accounts for losses during electricity transmission. These ZNEs must generate more electricity than zero net site energy buildings.
- Net zero energy emissions
- Outside the United States and Canada, a ZEB is generally defined as one with zero net energy emissions, also known as a zero carbon building or zero emissions building. Under this definition the carbon emissions generated from on-site or off-site fossil fuel use are balanced by the amount of on-site renewable energy production. Other definitions include not only the carbon emissions generated by the building in use, but also those generated in the construction of the building and the embodied energy of the structure. Others debate whether the carbon emissions of commuting to and from the building should also be included in the calculation.
- Net zero cost
- In this type of building, the cost of purchasing energy is balanced by income from sales of electricity to the grid of electricity generated on-site. Such a status depends on how a utility credits net electricity generation and the utility rate structure the building uses.
- Net off-site zero energy use
- A building may be considered a ZEB if 100% of the energy it purchases comes from renewable energy sources, even if the energy is generated off the site.
- Off-the-grid
- Off-the-grid buildings are stand-alone ZEBs that are not connected to an off-site energy utility facility. They require distributed renewable energy generation and energy storage capability (for when the sun is not shining, wind is not blowing, etc.). An energy autarkic house is a building concept where the balance of the own energy consumption and production can be made on an hourly or even smaller basis. Energy autarkic houses can be taken off-the-grid.
Design and construction
The most cost-effective steps toward a reduction in a building's energy consumption usually occurs during the design process.[5] To achieve efficient energy use, zero energy design departs significantly from conventional construction practice. Successful zero energy building designers typically combine time tested passive solar, or natural conditioning, principles that work with the on site assets. Sunlight and solar heat, prevailing breezes, and the cool of the earth below a building, can provide daylighting and stable indoor temperatures with minimum mechanical means. ZEBs are normally optimized to use passive solar heat gain and shading, combined with thermal mass to stabilize diurnal temperature variations throughout the day, and in most climates are superinsulated.[6] All the technologies needed to create zero energy buildings are available off-the-shelf today.
Sophisticated 3D computer simulation tools are available to model how a building will perform with a range of design variables such as building orientation (relative to the daily and seasonal position of the sun), window and door type and placement, overhang depth, insulation type and values of the building elements, air tightness (weatherization), the efficiency of heating, cooling, lighting and other equipment, as well as local climate. These simulations help the designers predict how the building will perform before it is built, and enable them to model the economic and financial implications on building cost benefit analysis, or even more appropriate - life cycle assessment.
Zero-energy buildings are built with significant energy-saving features. The heating and cooling loads are lowered by using high-efficiency equipment, added insulation, high-efficiency windows, natural ventilation, and other techniques. These features vary depending on climate zones in which the construction occurs. Water heating loads can be lowered by using water conservation fixtures, heat recovery units on waste water, and by using solar water heating, and high-efficiency water heating equipment. In addition, daylighting with skylites or solartubes can provide 100% of daytime illumination within the home. Nighttime illumination is typically done with fluorescent and LED lighting that use 1/3 or less power than incandescent lights, without adding unwanted heat. And miscellaneous electric loads can be lessened by choosing efficient appliances and minimizing phantom loads or standby power. Other techniques to reach net zero (dependent on climate) are Earth sheltered building principles, superinsulation walls using straw-bale construction, Vitruvianbuilt pre-fabricated building panels and roof elements plus exterior landscaping for seasonal shading.
Zero-energy buildings are often designed to make dual use of energy including white goods; for example, using refrigerator exhaust to heat domestic water, ventilation air and shower drain heat exchangers, office machines and computer servers, and body heat to heat the building. These buildings make use of heat energy that conventional buildings may exhaust outside. They may use heat recovery ventilation, hot water heat recycling, combined heat and power, and absorption chiller units.
Energy harvest
ZEBs harvest available energy to meet their electricity and heating or cooling needs. In the case of individual houses, various microgeneration technologies may be used to provide heat and electricity to the building, using solar cells or wind turbines for electricity, and biofuels or solar collectors linked to seasonal thermal stores for space heating. To cope with fluctuations in demand, zero energy buildings are frequently connected to the electricity grid, export electricity to the grid when there is a surplus, and drawing electricity when not enough electricity is being produced.[7] Other buildings may be fully autonomous.
Energy harvesting is most often more effective (in cost and resource utilization) when done on a local but combined scale, for example, a group of houses, co-housing, local district, village, etc. rather than an individual basis. An energy benefit of such localized energy harvesting is the virtual elimination of electrical transmission and electricity distribution losses. These losses amount to about 7.2%-7.4% of the energy transferred.[8] Energy harvesting in commercial and industrial applications should benefit from the topography of each location. The production of goods under net zero fossil energy consumption requires locations of geothermal, microhydro, solar, and wind resources to sustain the concept.[9]
Zero-energy neighborhoods, such as the BedZED development in the United Kingdom, and those that are spreading rapidly in California and China, may use distributed generation schemes. This may in some cases include district heating, community chilled water, shared wind turbines, etc. There are current plans to use ZEB technologies to build entire off-the-grid or net zero energy use cities.
The "energy harvest" versus "energy conservation" debate
One of the key areas of debate in zero energy building design is over the balance between energy conservation and the distributed point-of-use harvesting of renewable energy (solar energy and wind energy). Most zero energy homes use a combination of the two strategies.[citation needed]
As a result of significant government subsidies for photovoltaic solar electric systems, wind turbines, etc., there are those who suggest that a ZEB is a conventional house with distributed renewable energy harvesting technologies. Entire additions of such homes have appeared in locations where photovoltaic (PV) subsidies are significant,[10] but many so called "Zero Energy Homes" still have utility bills. This type of energy harvesting without added energy conservation may not be cost effective with the current price of electricity generated with photovoltaic equipment (depending on the local price of power company electricity),[11] and may also requires greater embodied energy and greater resources so be thus the less ecological approach.[citation needed]
Since the 1980s passive solar building design and passive house have demonstrated heating energy consumption reductions of 70% to 90% in many locations, without active energy harvesting. For new builds, and with expert design, this can be accomplished with little additional construction cost for materials over a conventional building. Very few industry experts have the skills or experience to fully capture benefits of the passive design.[citation needed] Such passive solar designs are much more cost effective than adding expensive photovoltaic panels on the roof of a conventional inefficient building.[11] A few kilowatt-hours of photovoltaic panels (costing 2 to 3 dollars per annual kW-hr production, U.S. dollar equivalent) may only reduce external energy requirements by 15% to 30%. A 100,000 BTU (110 MJ) high seasonal energy efficiency ratio 14 conventional air conditioner requires over 7 kW of photovoltaic electricity while it is operating, and that does not include enough for off-the-grid night-time operation. Passive cooling, and superior system engineering techniques, can reduce the air conditioning requirement by 70% to 90%. Photovoltaic generated electricity becomes more cost-effective when the overall demand for electricity is lower.
Occupant behavior
The energy used in a building can vary greatly depending on the behavior of its occupants. The acceptance of what is considered comfortable varies widely. Studies of identical homes in the United States have shown dramatic differences in energy use, with some homes using more than twice the energy of others.[12] Occupant behavior can vary from differences in setting and programming thermostats, varying levels of illumination and hot water, and the amount of miscellaneous electric devices used.[5]
Development efforts
Wide acceptance of zero energy building technology may require more government incentives or building code regulations, the development of recognized standards, or significant increases in the cost of conventional energy.
The Google photovoltaic campus, and the Microsoft 480-kilowatt photovoltaic campus relied on U.S. Federal, and especially California, subsidies and financial incentives. California is now providing $3.2 billion USD in subsidies[13] for residential-and-commercial near-zero-energy buildings, due to California's serious electricity shortage, frequent power outages, and air pollution problems. The details of other American states' renewable energy subsidies (up to $5.00 USD per watt) can be found in the Database of State Incentives for Renewables and Efficiency.[14] The Florida Solar Energy Center has a slide presentation on recent progress in this area.[15]
The World Business Council for Sustainable Development[16] has launched a major initiative to support the development of ZEB. Led by the CEO of United Technologies and the Chairman of Lafarge, the organization has both the support of large global companies and the expertise to mobilize the corporate world and governmental support to make ZEB a reality. Their first report, a survey of key players in real estate and construction, indicates that the costs of building green are overestimated by 300 percent. Survey respondents estimated that greenhouse gas emissions by buildings are 19 percent of the worldwide total, in contrast to the actual value of roughly 40 percent.[17]
Influential zero- and low-energy buildings
Those who commissioned construction of Passive Houses and Zero Energy Homes (over the last three decades) were essential to iterative, incremental, cutting-edge, technology innovations. Much has been learned from many significant successes, and a few expensive failures.
The zero energy building concept has been a progressive evolution from other low-energy building designs. Among these, the Canadian R-2000 and the German passive house standards have been internationally influential. Collaborative government demonstration projects, such as the superinsulated Saskatchewan House, and the International Energy Agency's Task 13, have also played their part.
Advantages and disadvantages
Advantages
- isolation for building owners from future energy price increases
- increased comfort due to more-uniform interior temperatures (this can be demonstrated with comparative isotherm maps)
- reduced requirement for energy austerity
- reduced total cost of ownership due to improved energy efficiency
- reduced total net monthly cost of living
- improved reliability - photovoltaic systems have 25-year warranties - seldom fail during weather problems - the 1982 photovoltaic systems on the Walt Disney World EPCOT Energy Pavilion are still working fine today, after going through 3 recent hurricanes
- extra cost is minimized for new construction compared to an afterthought retrofit
- higher resale value as potential owners demand more ZEBs than available supply
- the value of a ZEB building relative to similar conventional building should increase every time energy costs increase
- future legislative restrictions, and carbon emission taxes/penalties may force expensive retrofits to inefficient buildings
Disadvantages
- initial costs can be higher - effort required to understand, apply, and qualify for ZEB subsidies
- very few designers or builders have the necessary skills or experience to build ZEBs[18]
- possible declines in future utility company renewable energy costs may lessen the value of capital invested in energy efficiency
- new photovoltaic solar cells equipment technology price has been falling at roughly 17% per year - It will lessen the value of capital invested in a solar electric generating system - Current subsidies will be phased out as photovoltaic mass production lowers future price
- challenge to recover higher initial costs on resale of building - appraisers are uninformed - their models do not consider energy
- while the individual house may use an average of net zero energy over a year, it may demand energy at the time when peak demand for the grid occurs. In such a case, the capacity of the grid must still provide electricity to all loads. Therefore, a ZEB may not reduce the required power plant capacity.
- without an optimised thermal envelope the embodied energy, heating and cooling energy and resource usage is higher than needed. ZEB by definition do not mandate a minimum heating and cooling performance level thus allowing oversized renewable energy systems to fill the energy gap.
- solar energy capture using the house envelope only works in locations unobstructed from the South. The solar energy capture cannot be optimized in South (for northern hemisphere, or North for southern Hemisphere) facing shade or wooded surroundings.
Zero energy building versus green building
The goal of green building and sustainable architecture is to use resources more efficiently and reduce a building's negative impact on the environment.[19] Zero energy buildings achieve one key green-building goal of completely or very significantly reducing energy use and greenhouse gas emissions for the life of the building. Zero energy buildings may or may not be considered "green" in all areas, such as reducing waste, using recycled building materials, etc. However, zero energy, or net-zero buildings do tend to have a much lower ecological impact over the life of the building compared with other 'green' buildings that require imported energy and/or fossil fuel to be habitable and meet the needs of occupants.
Because of the design challenges and sensitivity to a site that are required to efficiently meet the energy needs of a building and occupants with renewable energy (solar, wind, geothermal, etc.), designers must apply holistic design principles, and take advantage of the free naturally occurring assets available, such as passive solar orientation, natural ventilation, daylighting, thermal mass, and night time cooling.
Certification
Many Green building certification programs do not require a building to have net zero energy use, only to reduce energy use a few percentage points below the minimum required by law. The Leadership in Energy and Environmental Design (LEED) certification developed by the U.S. Green Building Council, and Green Globes, involve check lists that are measurement tools, not design tools. Inexperienced designers or architects may cherry-pick points to meet a target certification level, even though those points may not be the best design choices for a specific building or climate.[citation needed]
Worldwide
Canada
- In Canada the Net-Zero Energy Home Coalition[20] is an industry association promoting net-zero energy home construction and the adoption of a near net-zero energy home (nNZEH), NZEH Ready and NZEH standard.
- The Canada Mortgage and Housing Corporation is sponsoring the EQuilibrium Sustainable Housing Competition[21] that will see the completion of fifteen zero-energy and near-zero-energy demonstration projects across the country starting in 2008.
- The EcoTerra House in Eastman, Quebec is Canada's first nearly net-zero energy housing built through the CMHC EQuilibrium Sustainable Housing Competition.[22] The house was designed by Dr. Masa Noguchi of the Mackintosh School of Architecture for Alouette Homes and engineered by Prof. Dr. Andreas K. Athienitis of Concordia University.[23]
- The EcoPlusHome in Bathurst, New Brunswick. The Eco Plus Home is a prefabricated test house built by Maple Leaf Homes and with technology from Bosch Thermotechnology.[24][25]
- The first net-zero passive house in Northshore, Vancouver, BC, is designed by Dr. Homayoun Arbabian. The design and construction of this SuperEcoHouse is undertaken by Vancouver Green Homes LTD.[citation needed]
China
- One example of the new generation of zero energy office buildings is the 71-story Pearl River Tower, which opened in 2009, as the Guangdong Company headquarters. It uses both modest energy efficiency, and a big distributed renewable energy generation from both solar and wind. Designed by Skidmore Owings Merrill LLP in Guangzhou, China,[26] the tower is receiving economic support from government subsidies that are now funding many significant conventional fossil-fuel (and nuclear energy) energy reduction efforts.
- Dongtan Eco-City near Shanghai
Germany
- Technische Universität Darmstadt won first place in the international zero energy design 2007 Solar Decathlon competition, with a passivhaus design (Passive house) + renewables, scoring highest in the Architecture, Lighting, and Engineering contests[27]
- Fraunhofer Institute for Solar Energy Systems (ISE), Freiburg im Breisgau[28]
Iran
In 2011 Energy Payesh House (EPH) or Khaneh Niroo Payesh by a collaboration of Fajr-e-Toseah Consultant Engineering Company and ancouver Green Homes Ltd] under management of Energy Payesh Group (EPG) launched the first Net-Zero passive house in Iran. This concept makes the design and construction of EPhouse a sample model and standardized process for mass production by MAPSA.[citation needed]
Also an example of the new generation of zero energy office buildings is the 24-story OIIC Office Tower, which is started in 2011, as the OIIC Company headquarter. It uses both modest energy efficiency, and a big distributed renewable energy generation from both solar and wind. It is managed by Rahgostar Naft Company and advised by Dr. Homayoun Arbabian (CEA) in Tehran, Iran. The tower is receiving economic support from government subsidies that are now funding many significant fossil-fuel-free efforts.[citation needed]
Ireland
In 2005 Scandinavian Homes[29] launched the worlds first standardised passive house in Ireland, this concept makes the design and construction of passive house a standardised process.
Conventional low energy construction techniques have been refined and modelled on the PHPP (Passive House Design Package) to create the standardised passive house.
Building offsite allows high precision techniques to be utilised and reduces the possibility of errors in construction.
In 2009 the same company started a project to use 23,000 liters of water in a seasonal storage tank,[30] heated up by evacuated solar tubes throughout the year, with the aim to provide the house with enough heat throughout the winter months thus eliminating the need for any electrical heat to keep the house comfortably warm. The system is monitored and documented by a research team from The University of Ulster and the results will be included in part of a PhD thesis.
Malaysia
In October 2007, the Malaysia Energy Centre (PTM) successfully completed the development and construction of the PTM Zero Energy Office (ZEO) Building. The building has been designed to be a super-energy-efficient building using only 286 kW·h/day. The renewable energy - photovoltaic combination is expected to result in a net zero energy requirement from the grid. The building is currently undergoing a fine tuning process by the local energy management team. Findings are expected to be published in a year.[31]
the Netherlands
In September 2006, the Dutch headquarters of the World Wildlife Fund (WWF) in Zeist was opened. This earth-friendly building, gives back more energy than it uses. All materials in the building were tested against strict requirements laid down by the WWF and the architect.[32]
Norway
In February 2009, the Research Council of Norway assigned The Faculty of Architecture and Fine Art at the Norwegian University of Science and Technology to host the Research Centre on Zero Emission Buildings (ZEB), which is one of eight new national Centres for Environment-friendly Energy Research (FME). The main objective of the FME-centres is to contribute to the development of good technologies for environmentally friendly energy and to raise the level of Norwegian expertise in this area. In addition, they should help to generate new industrial activity and new jobs. Over the next eight years, the FME-Centre ZEB will develop competitive products and solutions for existing and new buildings that will lead to market penetration of zero emission buildings related to their production, operation and demolition.
Singapore
Singapore’s first zero energy building was launched at the inaugural Singapore Green Building Week.[33]
Switzerland
The Swiss MINERGIE-A-Eco label certifies zero energy buildings. The first building with this label, a single-family home, was completed in Mühleberg in 2011.[34]
United Arab Emirates
United Kingdom
In December 2006 the government announced that by 2016 all new homes in England will be zero energy buildings. To encourage this, an exemption from Stamp Duty Land Tax is planned. In Wales the plan is for the standard to be met earlier in 2011, although it is looking more likely that the actual implementation date will be 2012. However, as a result of a unilateral change of policy published at the time of the March 2011 budget, a more limited policy is now planned which, it is estimated, will only mitigate two thirds of the emissions of a new home.[35][36]
- BedZED development
- Hockerton Housing Project Hockerton Housing Project
United States
In the US, ZEB research is currently being supported by the US Department of Energy (DOE) Building America Program ,[37] including industry-based consortia and researcher organizations at the National Renewable Energy Laboratory (NREL), the Florida Solar Energy Center (FSEC), Lawrence Berkeley National Laboratory (LBNL), and Oak Ridge National Laboratory (ORNL). From fiscal year 2008 to 2012, DOE plans to award $40 million to four Building America teams, the Building Science Corporation; IBACOS; the Consortium of Advanced Residential Buildings; and the Building Industry Research Alliance, as well as a consortium of academic and building industry leaders. The funds will be used to develop net-zero-energy homes that consume at 50% to 70% less energy than conventional homes.[38]
DOE is also awarding $4.1 million to two regional building technology application centers that will accelerate the adoption of new and developing energy-efficient technologies. The two centers, located at the University of Central Florida and Washington State University, will serve 17 states, providing information and training on commercially available energy-efficient technologies.[38]
The U.S. Energy Independence and Security Act of 2007[39] created 2008 through 2012 funding for a new solar air conditioning research and development program, which should soon demonstrate multiple new technology innovations and mass production economies of scale.
The 2008 Solar America Initiative funded research and development into future development of cost-effective Zero Energy Homes in the amount of $148 million in 2008.[40][41]
The Solar Energy Tax Credits have been extended until the end of 2016. Solar power in the United States
By Executive Order 13514, U.S. President Barack Obama mandated that by 2015, 15% of existing Federal buildings conform to new energy efficiency standards and 100% of all new Federal buildings be Zero-Net-Energy by 2030.
Energy Free Home Challenge - In 2007, the philanthropic Siebel Foundation created the Energy Free Home Foundation. The goal was to offer $20 million in global incentive prizes to design and build a 2,000 square foot (186 square meter) three-bedroom, two bathroom home with (1) net-zero annual utility bills that also has (2) high market appeal, and (3) costs no more than a conventional home to construct.[42]
The plan included funding to build the top ten entries at $250,000 each, a $10 million first prize, and then a total of 100 such homes to be built and sold to the public.
Beginning in 2009, Thomas Siebel made many presentations about his Energy Free Home Challenge.[43] The Siebel Foundation Report stated that the Energy Free Home Challenge was "Launching in late 2009".[44]
Berkley National Laboratory (University of California, Berkley) participated in writing the "Feasibility of Achieving Zero-Net-Energy, Zero-Net-Cost Homes"[45] for the $20-million Energy Free Home Challenge.
Although the energyfreehome.org website is still defined, everything about the $20-million Challenge has been deleted without explanation.[46]
If implemented, the Energy Free Home Challenge would have provided much-needed increased incentives for improved technology and consumer education about zero energy building at the same cost as conventional housing.
- Arizona
- Zero Energy House developed by the NAHB Research Center and John Wesley Miller Companies, Tucson.
- California
- The IDeAs Z2 Design Facility [47] is a net zero energy, zero carbon retrofit project occupied since 2007. It uses less than one fourth the energy of a typical U.S. office [48] by applying strategies such as daylighting, radiant heating/cooling with a ground-source heat pump and high energy performance lighting and computing. The remaining energy demand is met with renewable energy from its building-integrated photovoltaic array. In 2009, building owner and occupant Integrated Design Associates (IDeAs) recorded actual measured energy use intensity of 21.17 kbtu/sf-year, with 21.72 kbtu/sf-year produced, for a net of -0.55 kbtu/sf-yr. The building is also carbon neutral, with no gas connection, and with carbon offsets purchased to cover the embodied carbon of the building materials used in the renovation.
- Florida
- The 1999 side-by-side Florida Solar Energy Center Lakeland Florida demonstration project[49] was called the "Zero Energy Home." It was a first-generation university effort that significantly influenced the creation of the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Zero Energy Home program.
- Michigan
- The Mission Zero House[50][51] is the 110-year-old Ann Arbor home of Greenovation.TV host and Environment Report contributor Matthew Grocoff.[52] As of 2011, the home is the oldest home in America to achieve net-zero energy.[53][54] The owners are chronicling their project on Greenovation.TV and the Environment Report on public radio.
- The Vineyard Project is a Zero Energy Home (ZEH) thanks to the Passive Solar Design, 3.3 Kws of Photovoltaics,Solar Hot Water and Geothermal Heating and Cooling. The home is pre-wired for a future wind turbine and only uses 600kwh of energy per month while a minimum of 20 kWh of electricity per day with many days net-metering backwards. The project also used ICF insulation throughout the entire house and is certified as Platinum under the LEED for Homes certification. This Project was awarded Green Builder Magazine Home of the Year 2009 [55]
- Missouri
- In 2010, architectural firm HOK worked with energy and daylighting consultant The Weidt Group to design a 170,735-square-foot (15,861.8 m2) net zero carbon emissions Class A office building prototype in St. Louis, Missouri.[56] The team chronicled its process and results on Netzerocourt.com.
- New Jersey
- The 31 Tannery Project, located in Branchburg, New Jersey, serves as the corporate headquarters for Ferreira Construction, the Ferreira Group, and Noveda Technologies. The 42,000-square-foot (3,900 m2) office and shop building was constructed in 2006 and is the 1st building in the state of New Jersey to meet New Jersey's Executive Order 54. The building is also the first Net Zero Electric Commercial Building in the United States.
- New York
- Green Acres, the first true zero-net energy development in America,[57] is located in New Paltz, about 80 miles (130 km) north of New York City. Greenhill Contracting began construction on this development of 25 single family homes in summer 2008,[58] with designs by BOLDER Architecture. After a full year of occupancy, from March 2009 to March 2010, the solar panels of the first occupied home in Green Acres generated 1490 kWh more energy than the home consumed. The chart of energy use and production is available at http://www.greenacresnewpaltz.com/pages/performance.html. The second occupied home has also achieved zero-net energy use. As of June 2011, 5 houses have been completed, purchased and occupied, 2 are under construction, and several more are being planned. The homes are built of insulated concrete forms with spray foam insulated rafters and triple pane casement windows, heated and cooled by a geothermal system, to create extremely energy-efficient and long-lasting buildings.[59] The heat recovery ventilator provides constant fresh air and, with low or no VOC (volatile organic compound) materials, these homes are very healthy to live in. To the best of our knowledge, Green Acres is the first development of multiple buildings, residential or commercial, that achieves true zero-net energy use in the United States, and the first zero-net energy development of single family homes in the world.[60][61]
- Greenhill Contracting has built 2 luxury zero-net energy homes in Esopus, completed in 2008. One house was the first Energy Star rated zero-net energy home in the Northeast and the first registered zero-net energy home on the US Department of Energy's Builder's Challenge website. These homes were the template for Green Acres and the other zero-net energy homes that Greenhill Contracting has built, in terms of methods and materials.
- The headquarters of Hudson Valley Clean Energy, located in Rhinebeck and completed in 2007, is the first and only zero-net energy, carbon-free commercial building in New York State and the entire Northeast. The building consumes less energy than it generates, using a solar electric system to generate power from the sun, geothermal heating and cooling, and solar thermal collectors to heat all its hot water.
- Oklahoma
- The first 5,000-square-foot (460 m2) zero energy design [62] home was built in 1979 with support from President Carter's new United States Department of Energy. It relied heavily on passive solar building design for space heat, water heat and space cooling. It heated and cooled itself effectively in a climate where the summer peak temperature was 110 degrees Fahrenheit, and the winter low temperature was -10 F. It did not use active solar systems. It is a double envelope house that uses a gravity-fed natural convection air flow design to circulate passive solar heat from 1,000 square feet (93 m2) of south-facing glass on its greenhouse through a thermal buffer zone in the winter. A swimming pool in the greenhouse provided thermal mass for winter heat storage. In the summer, air from two 24-inch (610 mm) 100-foot (30 m)-long underground earth tubes is used to cool the thermal buffer zone and exhaust heat through 7200 cfm of outer-envelope roof vents.
- Texas
- The University of North Texas (UNT) is currently constructing a Zero Energy Research Laboratory[63] on its 300 acre research campus, Discovery Park, in Denton, Texas. The project is funded at over $1,150,000 and will primarily benefit students in mechanical and energy engineering (UNT became the first university to offer degrees in mechanical and energy engineering in 2006). This 1,200 square-foot structure is expected to open in early 2012.
- Vermont
- The Putney School's net zero Field House was opened October 10, 2009. In use for a over a year, as of December, 2010, the Field House used 48,374 kWh and produced a total of 51,371 kWh during the first 12 months of operation, thus performing at slightly better than net-zero.[64] Also in December, the building won an AIA-Vermont Honor Award.[65]
- The Charlotte Vermont House designed by Pill-Maharam Architects is a verified net zero energy house completed in 2007. The project won the Northeast Sustainable Energy Association's Net Zero Energy award in 2009.[66]
See also
References
- ^ US Department of Energy, retrieved online 2011-09-18
- ^ Baden, S., et al., "Hurdling Financial Barriers to Lower Energy Buildings: Experiences from the USA and Europe on Financial Incentives and Monetizing Building Energy Savings in Private Investment Decisions." Proceedings of 2006 ACEEE Summer Study on Energy Efficiency in Buildings, American Council for an Energy Efficient Economy, Washington DC, August 2006.
- ^ US Department of Energy. Annual Energy Review 2006 27 June 2007. Accessed 27 April 2008.
- ^ Torcellini et al. Zero Energy Buildings: A Critical Look at the Definition. National Energy Renewable Laboratory (NREL). June 2006.
- ^ a b Vieira, R., "The Energy Policy Pyramid - A Hierarchal Tool For Decision Makers"., Fifteenth Symposium on Improving Building Systems in Hot and Humid Climates, July 24–26, 2006 Orlando, FL. Cite error: The named reference "energypyr" was defined multiple times with different content (see the help page).
- ^ Frej, Anne, editor (2005). Green Office Buildings: A Practical Guide to Development. Urban Land Institute. pp. 138–142. ISBN 2005904468.
{{cite book}}
:|first=
has generic name (help); Check|isbn=
value: checksum (help)CS1 maint: multiple names: authors list (link) - ^ http://www.nrel.gov/docs/fy06osti/39833.pdf
- ^ Powerwatch. Domestic Energy Use in the UK. 2000.
- ^ http://www.lowcarbonoptions.net/Strategy/Construction/ZEB.html
- ^ Database of State Incentives for Renewables & Efficiency (DSIRE) Home. 2007.
- ^ a b P. Eiffert. Guidelines for the Economic Evaluation of Building-Integrated Photovoltaic Power Systems. Prepared for National Renewable Energy Laboratory. January 2003.
- ^ Parker, D., Hoak, D., Cummings, J., “Pilot Evaluation of Energy Savings from Residential Energy Demand Feedback Devices,” Florida Solar Energy Center, January 2008.
- ^ Go Solar California
- ^ Database of State Incentives for Renewables & Efficiency
- ^ Energy: The Grand Challenge of the 21st Century
- ^ World Business Council for Sustainable Development (WBCSD)
- ^ World Business Council for Sustainable Development, August 2007, Energy Efficiency in Buildings: Business Realities and Opportunities Retrieved: 2007-09-05.
- ^ Spiegel, Jan Allen. "The House that Green Built." New York Times. 20 April 2008. Accessed on 29 June 2008.
- ^ US Environmental Protection Agency, "Green Building," 16 Apr. 2008. Accessed on: 17 May 2008.
- ^ Net-Zero Energy Home (NZEH) Coalition, Canada
- ^ Equilibrium Housing Competition Canada
- ^ EcoTerra House, Canada
- ^ Net Zero-energy home design strategies, Canada
- ^ http://telegraphjournal.canadaeast.com/article/767343
- ^ http://www.ecoplushome.com, Canada
- ^ "Skidmore, Owings & Merrill Pearl River Tower". Retrieved 2008-04-14. [dead link ]
- ^ DOE Solar Decathlon: Final Results:First Place: Technische Universität Darmstadt
- ^ Self-Sufficient Solar House
- ^ Scandinavian Homes Ltd
- ^ Scandinavian Homes Ltd, Research
- ^ PTM Zero Energy Office Building Project. August 2006.
- ^ "huisvesting".
- ^ Singapore’s First Zero Energy Building Launched at the Inaugural Singapore Green Building Week
- ^ von Muralt, Klaus (5 June 2011). "Mit «Nullenergie» in eine klimabewusste Zukunft". Der Bund. Retrieved 5 June 2011.
- ^ Why we've resigned from the Zero Carbon Taskforce WWF UK, published 2011-04-04, accessed 2011-04-04
- ^ Government's U turn on Zero Carbon is anti-green and anti-growth UK Green Building Council, published 11-03-23, accessed 2011-04-04
- ^ Building Technologies Program: Building America
- ^ a b "U.S. DOE - 2007 Solar Decathlon Closing Ceremony and Awards". October 2007. Retrieved 2008-04-14.
- ^ "U.S. Energy Independence and Security Act of 2007". Retrieved 2007-12-23.
- ^ Budget of the United States Government, FY 2008: DEPARTMENT OF ENERGY
- ^ Office of the Press Secretary (August 8, 2005)Fact Sheet: President Bush Signs Into Law a National Energy Plan
- ^ Goals of the Siebel Foundation Energy Free Home Challenge
- ^ Thomas Siebel Pre-Announcing Free Energy Home Challenge in Forbes Interview
- ^ 2008 Siebel Foundation Report
- ^ University of California, Berkley - Feasibility of Achieving Zero-Net-Energy, Zero-Net-Cost Homes
- ^ All information about the Energy Free Home Challenge has been deleted from www.energyfreehome.org
- ^ ASHRAE: Atlanta, Georgia:High Performance Buildings Case Study
- ^ U.S Energy Information Administration. EIA Commercial Buildings Energy Consumption Survey.Table C3A. Consumption and Gross Energy Intensity on for Sum of Major Fuels for All Buildings 2003: Part 3: Office Building Energy Intensity, 92.9.
- ^ ZEH: Lakeland, Florida:Examining the Limits of Building Energy Efficiency Through Side-by-Side Testing
- ^ http://www.MissionZeroHouse.com
- ^ http://www.mnn.com/your-home/green-building-remodeling/blogs/mission-zero-achieved-in-ann-arbor
- ^ http://www.Greenovation.TV
- ^ http://www.oldhouseweb.com/blog/americas-oldest-net-zero-solar-house/
- ^ Koch, Wendy (11 June 2010). "110-Year-Old Home Gets Net Zero Energy Rehab". USA Today.
- ^ Green Builder Magazine, December 2009 Pages 31–34
- ^ A Net Zero Office Today
- ^ "Nation's First Zero-Net Energy Home Development", Mid-Hudson Energy $mart Communities newsletter, Winter 2011 Edition
- ^ "Green Acres: Developer to Build Zero Energy Homes in New Paltz", New Paltz Times, August 7, 2008
- ^ "On the House", NY Daily News, April 8, 2011
- ^ "Going Net-Zero in New York State", Solar Today, July / August 2010
- ^ "Zero-Net Energy Homes", New York House, August 2009
- ^ "Zero Energy Design ABUNDANT ENERGY In Harmony With Nature". Retrieved 2011-03-27.
- ^ http://web3.unt.edu/news/story.cfm?story=12244 Zero Energy Research Labratory
- ^ http://www.putneyschool.org/putneynews/?p=1328
- ^ AIA-Vermont Honor Award
- ^ Northeast Sustainable Energy Association
Further reading
- Nisson, J. D. Ned; and Gautam Dutt, "The Superinsulated Home Book", John Wiley & Sons, 1985, ISBN 0-471-88734-X, ISBN 0-471-81343-5.
- Markvart, Thomas; Editor, "Solar Electricity" John Wiley & Sons; 2nd edition, 2000, ISBN 0-471-98853-7.
- Clarke, Joseph; "Energy Simulation in Building Design", Second Edition Butterworth-Heinemann; 2nd edition, 2001, ISBN 0-7506-5082-6.
- National Renewable Energy Laboratory, 2000 ZEB meeting report
- Noguchi, Masa, ed., "The Quest for Zero Carbon Housing Solutions", Open House International, Vol.33, No.3, 2008, Open House International
- Voss, Karsten; Musall, Eike: "Net zero energy buildings - International projects of carbon neutrality in buildings", detail, München, 2011, ISBN 978-3-0346-0780-3