Jump to content

E9 honeycomb: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 40: Line 40:
This honeycomb is highly regular in the sense that its symmetry group (the affine E<sub>9</sub> Weyl group) acts transitively on the [[face (geometry)|''k''-faces]] for ''k'' ≤ 7. All of the ''k''-faces for ''k'' ≤ 8 are simplices.
This honeycomb is highly regular in the sense that its symmetry group (the affine E<sub>9</sub> Weyl group) acts transitively on the [[face (geometry)|''k''-faces]] for ''k'' ≤ 7. All of the ''k''-faces for ''k'' ≤ 8 are simplices.


This honeycomb is last in the series of [[Semiregular k 21 polytope|k<sub>21</sub> polytopes]], enumerated by [[Gosset]] in 1900, although his list ended with the 8-dimensional the Euclidean honeycomb, 5<sub>21</sub>.<ref>''The Symmetries of Things'' 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 [http://www.akpeters.com/product.asp?ProdCode=2205]</ref>
This honeycomb is last in the series of [[Semiregular k 21 polytope|k<sub>21</sub> polytopes]], enumerated by [[Thorold_Gosset]] in 1900, although his list ended with the 8-dimensional the Euclidean honeycomb, 5<sub>21</sub>.<ref>''The Symmetries of Things'' 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 [http://www.akpeters.com/product.asp?ProdCode=2205]</ref>
===Construction===
===Construction===



Revision as of 00:11, 20 January 2012

In geometry, an E9 honeycomb is a tessellation of uniform polytopes in hyperbolic 9-dimensional space. , also (E10) is a noncompact hyperbolic group, so either facets or vertex figures will not be bounded.

E10 is last of the series of Coxeter groups with a bifurcated Coxeter-Dynkin diagram of lengths 6,2,1. There are 1023 unique E10 honeycombs by all combinations of its Coxeter-Dynkin diagram. There are no regular honeycombs in the family since its Coxeter diagram a nonlinear graph, but there are three simplest ones, with a single ring at the end of its 3 branches: 621, 261, 162.

621 honeycomb

621 honeycomb
Family k21 polytope
Schläfli symbol {3,3,3,3,3,3,32,1}
Coxeter symbol 621
Coxeter-Dynkin diagram
9-faces 611
{38}
8-faces {37}
7-faces {36}
6-faces {35}
5-faces {34}
4-faces {33}
Cells {32}
Faces {3}
Vertex figure 521
Symmetry group E10, [36,2,1]

The 621 honeycomb is constructed from alternating 9-simplex and 9-orthoplex facets within the symmetry of the E10 Coxeter group.

This honeycomb is highly regular in the sense that its symmetry group (the affine E9 Weyl group) acts transitively on the k-faces for k ≤ 7. All of the k-faces for k ≤ 8 are simplices.

This honeycomb is last in the series of k21 polytopes, enumerated by Thorold_Gosset in 1900, although his list ended with the 8-dimensional the Euclidean honeycomb, 521.[1]

Construction

It is created by a Wythoff construction upon a set of 10 hyperplane mirrors in 9-dimensional hyperbolic space.

The facet information can be extracted from its Coxeter-Dynkin diagram.

Removing the node on the end of the 2-length branch leaves the 9-orthoplex, 711.

Removing the node on the end of the 1-length branch leaves the 9-simplex.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 521 honeycomb.

The edge figure is determined from the vertex figure by removing the ringed node and ringing the neighboring node. This makes the 421 polytope.

The face figure is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the 321 polytope.

The cell figure is determined from the face figure by removing the ringed node and ringing the neighboring node. This makes the 221 polytope.

261 honeycomb

261 honeycomb
Family 2k1 polytope
Schläfli symbol {3,3,36,1}
Coxeter symbol 261
Coxeter-Dynkin diagram
9-face types 251
{37}
8-face types 241, {37}
7-face types 231, {36}
6-face types 221, {35}
5-face types 211, {34}
4-face type {33}
Cells {32}
Faces {3}
Vertex figure 161
Coxeter group , [36,2,1]

The 261 honeycomb is composed of 251 9-honeycomb and 9-simplex facets. It is the final figure in the 2k1 family.

Construction

It is created by a Wythoff construction upon a set of 10 hyperplane mirrors in 9-dimensional hyperbolic space.

The facet information can be extracted from its Coxeter-Dynkin diagram.

Removing the node on the short branch leaves the 9-simplex.

Removing the node on the end of the 6-length branch leaves the 251 honeycomb. This is an infinite facet because E10 is a noncompact hyperbolic group.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 9-demicube, 161.

The edge figure is the vertex figure of the edge figure. This makes the rectified 8-simplex, 051.

The face figure is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the 5-simplex prism.

162 honeycomb

162 honeycomb
Family 1k2 polytope
Schläfli symbol {3,36,2}
Coxeter symbol 162
Coxeter-Dynkin diagram
9-face types 152, 161
8-face types 142, 151
7-face types 132, 141
6-face types 122, {31,3,1}
{35}
5-face types 121, {34}
4-face type 111, {33}
Cells {32}
Faces {3}
Vertex figure t2{38}
Coxeter group , [36,2,1]

The 162 honeycomb contains 152 (9-honeycomb) and 161 9-demicube facets. It is the final figure in the 1k2 polytope family.

Construction

It is created by a Wythoff construction upon a set of 10 hyperplane mirrors in 9-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram.

Removing the node on the end of the 2-length branch leaves the 9-demicube, 161.

Removing the node on the end of the 6-length branch leaves the 152 honeycomb.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 9-simplex, 062.

Notes

  1. ^ The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 [1]

References

  • Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 978-0-486-40919-1 (Chapter 3: Wythoff's Construction for Uniform Polytopes)
  • Coxeter Regular Polytopes (1963), Macmillian Company
    • Regular Polytopes, Third edition, (1973), Dover edition, ISBN 0-486-61480-8 (Chapter 5: The Kaleidoscope)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [2]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds