Pseudo-differential operator: Difference between revisions
No edit summary |
|||
Line 79: | Line 79: | ||
This is similar to formula ({{EquationNote|1}}), except that 1/''P''(ξ) is not a polynomial function, but a function of a more general kind. |
This is similar to formula ({{EquationNote|1}}), except that 1/''P''(ξ) is not a polynomial function, but a function of a more general kind. |
||
== |
==Definition of Pseudo-Differential Operators== |
||
The main idea is to define operators ''P''(''x'',''D'') by using formula (1) and admitting more general symbols ''P''(''x'',ξ): |
The main idea is to define operators ''P''(''x'',''D'') by using formula (1) and admitting more general symbols ''P''(''x'',ξ): |
||
Revision as of 16:35, 29 January 2012
In mathematical analysis a pseudo-differential operator is an extension of the concept of differential operator. Pseudo-differential operators are used extensively in the theory of partial differential equations and quantum field theory.
Motivation
Linear Differential Operators with Constant Coefficients
Consider a linear differential operator with constant coefficients,
which acts on smooth functions with compact support in Rn. This operator can be written as a composition of a Fourier transform, a simple multiplication by the polynomial function (called the symbol)
and an inverse Fourier transform, in the form:
(1) |
Here, α = (α1, … ,αn) is a multi-index, are complex numbers, and
is an iterated partial derivative, where ∂j means differentiation with respect to the j-th variable. We introduce the constants to facilitate the calculation of Fourier transforms.
Similarly, a pseudo-differential operator P(x,D) on Rn is an operator of the form
(2) |
with a more general function P in the integrand, with certain properties to be specified.
- Derivation of formula (1)
The Fourier transform of a smooth function u, compactly supported in Rn, is
and Fourier's inversion formula gives
By applying P(D) to this representation of u and using
one obtains formula (1).
Representation of Solutions to Partial Differential Equations
To solve the partial differential equation
we (formally) apply the Fourier transform on both sides and obtain the algebraic equation
- .
If the symbol P(ξ) is never zero when ξ ∈ Rn, then it is possible to divide by P(ξ):
By Fourier's inversion formula, a solution is
- .
Here it is assumed that:
- P(D) is a linear differential operator with constant coefficients,
- its symbol P(ξ) is never zero,
- both u and ƒ have a well defined Fourier transform.
The last assumption can be weakened by using the theory of distributions. The first two assumptions can be weakened as follows.
In the last formula, write out the Fourier transform of ƒ to obtain
- .
This is similar to formula (1), except that 1/P(ξ) is not a polynomial function, but a function of a more general kind.
Definition of Pseudo-Differential Operators
The main idea is to define operators P(x,D) by using formula (1) and admitting more general symbols P(x,ξ):
One assumes that the symbol P(x,ξ) belongs to a certain symbol class.
For instance, if P(x,ξ) is an infinitely differentiable function on Rn × Rn with the property
for all x,ξ ∈Rn, all multiindices α,β. some constants Cα, β and some real number m, then P belongs to the symbol class of Hörmander. The corresponding operator P(x,D) is called a pseudo-differential operator of order m and belongs to the class
Properties
Linear differential operators of order m with smooth bounded coefficients are pseudo-differential operators of order m. The composition PQ of two pseudo-differential operators P, Q is again a pseudo-differential operator and the symbol of PQ can be calculated by using the symbols of P and Q. The adjoint and transpose of a pseudo-differential operator is a pseudo-differential operator.
If a differential operator of order m is (uniformly) elliptic (of order m) and invertible, then its inverse is a pseudo-differential operator of order −m, and its symbol can be calculated. This means that one can solve linear elliptic differential equations more or less explicitly by using the theory of pseudo-differential operators.
Differential operators are local in the sense that one only needs the value of a function in a neighbourhood of a point to determine the effect of the operator. Pseudo-differential operators are pseudo-local, which means informally that when applied to a distribution they do not create a singularity at points where the distribution was already smooth.
Just as a differential operator can be expressed in terms of D = −id/dx in the form
for a polynomial p in D (which is called the symbol), a pseudo-differential operator has a symbol in a more general class of functions. Often one can reduce a problem in analysis of pseudo-differential operators to a sequence of algebraic problems involving their symbols, and this is the essence of microlocal analysis.
See also
- Differential algebra for a definition of pseudo-differential operators in the context of differential algebras and differential rings.
- Fourier transform
- Fourier integral operator
- Oscillatory integral operator
- Sato's fundamental theorem
Further reading
Here are some of the standard reference books
- Michael E. Taylor, Pseudodifferential Operators, Princeton Univ. Press 1981. ISBN 0-691-08282-0
- M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag 2001. ISBN 3-540-41195-X
- Francois Treves, Introduction to Pseudo Differential and Fourier Integral Operators, (University Series in Mathematics), Plenum Publ. Co. 1981. ISBN 0-306-40404-4
- F. G. Friedlander and M. Joshi, Introduction to the Theory of Distributions, Cambridge University Press 1999. ISBN 0-521-64971-4
- Hörmander, Lars (1987). The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Springer. ISBN 3540499377.
External links
- Lectures on Pseudo-differential Operators by Mark S. Joshi on arxiv.org.