Jump to content

Mechanotaxis: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
JG 28 (talk | contribs)
Removing unnecessary bolding
JG 28 (talk | contribs)
mNo edit summary
Line 5: Line 5:
A subset of mechanotaxis - termed durotaxis - refers specifically to [[cell migration]] guided by gradients in substrate rigidity (i.e. stiffness).<ref>{{cite journal|last=LO|first=C|title=Cell Movement Is Guided by the Rigidity of the Substrate|journal=Biophysical Journal|date=1 July 2000|volume=79|issue=1|pages=144–152|doi=10.1016/S0006-3495(00)76279-5|pmid=10866943}}</ref><ref>{{cite journal|last=Sochol|first=Ryan D.|coauthors=Higa, Adrienne T., Janairo, Randall R. R., Li, Song, Lin, Liwei|title=Unidirectional mechanical cellular stimuli via micropost array gradients|journal=Soft Matter|date=1 January 2011|volume=7|issue=10|pages=4606|doi=10.1039/C1SM05163F}}</ref> The observation that certain cell types seeded on a substrate rigidity gradient migrate up the gradient (i.e. in the direction of increasing substrate stiffness) was first reported by Lo et al.<ref>{{cite journal|last=Lo|first=C|title=Cell Movement Is Guided by the Rigidity of the Substrate|journal=Biophysical Journal|date=1 July 2000|volume=79|issue=1|pages=144–152|doi=10.1016/S0006-3495(00)76279-5|pmid=10866943}}</ref> The primary method for creating rigidity gradients for cells (e.g., in [[biomaterials]]) consists of altering the degree of [[cross-linking]] in [[polymers]] to adjust substrate stiffness.<ref>{{cite journal|last=Gray|first=Darren S.|coauthors=Tien, Joe, Chen, Christopher S.|title=Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus|journal=Journal of Biomedical Materials Research|date=1 September 2003|volume=66A|issue=3|pages=605–614|doi=10.1002/jbm.a.10585}}</ref><ref>{{cite journal|last=Wong|first=Joyce Y.|coauthors=Velasco, Alan, Rajagopalan, Padmavathy, Pham, Quynh|title=Directed Movement of Vascular Smooth Muscle Cells on Gradient-Compliant Hydrogels|journal=Langmuir|date=1 March 2003|volume=19|issue=5|pages=1908–1913|doi=10.1021/la026403p}}</ref> Alternative substrate rigidity gradients include micropost array gradients, where the stiffness of individual microposts is increased in a single, designed direction.<ref>{{cite journal|last=Sochol|first=Ryan D.|coauthors=Higa, Adrienne T., Janairo, Randall R. R., Li, Song, Lin, Liwei|title=Unidirectional mechanical cellular stimuli via micropost array gradients|journal=Soft Matter|date=1 January 2011|volume=7|issue=10|pages=4606|doi=10.1039/C1SM05163F}}</ref>
A subset of mechanotaxis - termed durotaxis - refers specifically to [[cell migration]] guided by gradients in substrate rigidity (i.e. stiffness).<ref>{{cite journal|last=LO|first=C|title=Cell Movement Is Guided by the Rigidity of the Substrate|journal=Biophysical Journal|date=1 July 2000|volume=79|issue=1|pages=144–152|doi=10.1016/S0006-3495(00)76279-5|pmid=10866943}}</ref><ref>{{cite journal|last=Sochol|first=Ryan D.|coauthors=Higa, Adrienne T., Janairo, Randall R. R., Li, Song, Lin, Liwei|title=Unidirectional mechanical cellular stimuli via micropost array gradients|journal=Soft Matter|date=1 January 2011|volume=7|issue=10|pages=4606|doi=10.1039/C1SM05163F}}</ref> The observation that certain cell types seeded on a substrate rigidity gradient migrate up the gradient (i.e. in the direction of increasing substrate stiffness) was first reported by Lo et al.<ref>{{cite journal|last=Lo|first=C|title=Cell Movement Is Guided by the Rigidity of the Substrate|journal=Biophysical Journal|date=1 July 2000|volume=79|issue=1|pages=144–152|doi=10.1016/S0006-3495(00)76279-5|pmid=10866943}}</ref> The primary method for creating rigidity gradients for cells (e.g., in [[biomaterials]]) consists of altering the degree of [[cross-linking]] in [[polymers]] to adjust substrate stiffness.<ref>{{cite journal|last=Gray|first=Darren S.|coauthors=Tien, Joe, Chen, Christopher S.|title=Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus|journal=Journal of Biomedical Materials Research|date=1 September 2003|volume=66A|issue=3|pages=605–614|doi=10.1002/jbm.a.10585}}</ref><ref>{{cite journal|last=Wong|first=Joyce Y.|coauthors=Velasco, Alan, Rajagopalan, Padmavathy, Pham, Quynh|title=Directed Movement of Vascular Smooth Muscle Cells on Gradient-Compliant Hydrogels|journal=Langmuir|date=1 March 2003|volume=19|issue=5|pages=1908–1913|doi=10.1021/la026403p}}</ref> Alternative substrate rigidity gradients include micropost array gradients, where the stiffness of individual microposts is increased in a single, designed direction.<ref>{{cite journal|last=Sochol|first=Ryan D.|coauthors=Higa, Adrienne T., Janairo, Randall R. R., Li, Song, Lin, Liwei|title=Unidirectional mechanical cellular stimuli via micropost array gradients|journal=Soft Matter|date=1 January 2011|volume=7|issue=10|pages=4606|doi=10.1039/C1SM05163F}}</ref>


'''References'''
References
{{Reflist}}
{{Reflist}}



Revision as of 04:02, 15 July 2012

Mechanotaxis refers to the directed movement of cell motility via mechanical cues (e.g., fluidic shear stress, substrate stiffness gradients, etc.).[1][2] In response to fluidic shear stress, for example, cells have been shown to migrate in the direction of the fluid flow.[3][4]

A subset of mechanotaxis - termed durotaxis - refers specifically to cell migration guided by gradients in substrate rigidity (i.e. stiffness).[5][6] The observation that certain cell types seeded on a substrate rigidity gradient migrate up the gradient (i.e. in the direction of increasing substrate stiffness) was first reported by Lo et al.[7] The primary method for creating rigidity gradients for cells (e.g., in biomaterials) consists of altering the degree of cross-linking in polymers to adjust substrate stiffness.[8][9] Alternative substrate rigidity gradients include micropost array gradients, where the stiffness of individual microposts is increased in a single, designed direction.[10]

References

  1. ^ Li, S. (March 19, 2002). "The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells". Proceedings of the National Academy of Sciences. 99 (6): 3546–3551. doi:10.1073/pnas.052018099.
  2. ^ LO, C (1 July 2000). "Cell Movement Is Guided by the Rigidity of the Substrate". Biophysical Journal. 79 (1): 144–152. doi:10.1016/S0006-3495(00)76279-5. PMID 10866943.
  3. ^ Li, S. (March 19, 2002). "The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells". Proceedings of the National Academy of Sciences. 99 (6): 3546–3551. doi:10.1073/pnas.052018099.
  4. ^ Hsu, Steve (11 November 2005). "Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces". Biochemical and Biophysical Research Communications. 337 (1): 401–409. doi:10.1016/j.bbrc.2005.08.272. PMID 16188239. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  5. ^ LO, C (1 July 2000). "Cell Movement Is Guided by the Rigidity of the Substrate". Biophysical Journal. 79 (1): 144–152. doi:10.1016/S0006-3495(00)76279-5. PMID 10866943.
  6. ^ Sochol, Ryan D. (1 January 2011). "Unidirectional mechanical cellular stimuli via micropost array gradients". Soft Matter. 7 (10): 4606. doi:10.1039/C1SM05163F. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  7. ^ Lo, C (1 July 2000). "Cell Movement Is Guided by the Rigidity of the Substrate". Biophysical Journal. 79 (1): 144–152. doi:10.1016/S0006-3495(00)76279-5. PMID 10866943.
  8. ^ Gray, Darren S. (1 September 2003). "Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus". Journal of Biomedical Materials Research. 66A (3): 605–614. doi:10.1002/jbm.a.10585. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  9. ^ Wong, Joyce Y. (1 March 2003). "Directed Movement of Vascular Smooth Muscle Cells on Gradient-Compliant Hydrogels". Langmuir. 19 (5): 1908–1913. doi:10.1021/la026403p. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  10. ^ Sochol, Ryan D. (1 January 2011). "Unidirectional mechanical cellular stimuli via micropost array gradients". Soft Matter. 7 (10): 4606. doi:10.1039/C1SM05163F. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)