Semiregular polytope: Difference between revisions
Double sharp (talk | contribs) No edit summary |
Double sharp (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
==See also== |
==See also== |
||
*[[Semiregular polyhedron]] |
*[[Semiregular polyhedron]] |
||
{{geometry-stub}} |
|||
[[Category:Polytopes]] |
[[Category:Polytopes]] |
Revision as of 10:09, 6 August 2012
In geometry, a semiregular polytope is usually taken to be a polytope that is vertex-uniform and has all its facets being regular polytopes.
In three-dimensional space and below, the terms semiregular polytope and uniform polytope have identical meanings, because all uniform polygons must be regular. However, since not all uniform polyhedra are regular, the number of semiregular polytopes in dimensions higher than three is much smaller than the number of uniform polytopes in the same number of dimensions.
The three convex semiregular polychora (4-polytopes) are the rectified 5-cell, snub 24-cell and rectified 600-cell. The only semiregular polytopes in higher dimensions are the k 21 polytopes, where the rectified 5-cell is the special case of k = 0.
Semiregular polytopes can be extended to semiregular honeycombs. The semiregular Euclidean honeycombs are the tetrahedral-octahedral honeycomb (3D), gyrated alternated cubic honeycomb (3D) and the 521 honeycomb (8D).