Jump to content

Elongated dodecahedron: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m r2.7.2+) (Robot: Adding sl:Rombo-šeststrani dodekaeder
sym
Line 6: Line 6:
Vertex_Count=18|
Vertex_Count=18|
Vertex_List=(8) 4.6.6<BR>(8) 4.4.6<BR>(2) 4.4.4.4|
Vertex_List=(8) 4.6.6<BR>(8) 4.4.6<BR>(2) 4.4.4.4|
Symmetry_Group=[[Dihedral symmetry in three dimensions|D<sub>4h</sub>]]|
Symmetry_Group=[[Dihedral symmetry in three dimensions|D<sub>4h</sub>]], [4,2], (*422), order 16|
Rotation_Group=D<sub>4</sub>, [4,2]<sup>+</sup>, (422), order 8|
Dual=-|
Dual=-|
Property_List=[[convex set|convex]], [[Zonohedron]]
Property_List=[[convex set|convex]], [[Zonohedron]]

Revision as of 20:05, 5 October 2012

Elongated dodecahedron
TypeDodecahedron
Faces8 rhombi
4 hexagons
Edges28
Vertices18
Vertex configuration(8) 4.6.6
(8) 4.4.6
(2) 4.4.4.4
Symmetry groupD4h, [4,2], (*422), order 16
Rotation groupD4, [4,2]+, (422), order 8
Dual polyhedron-
Propertiesconvex, Zonohedron

The rhombo-hexagonal dodecahedron is a convex polyhedron with 8 rhombic and 4 equilateral hexagonal faces.

It is also called an elongated dodecahedron and extended rhombic dodecahedron because it is related to the rhombic dodecahedron by expanding four rhombic faces of the rhombic dodecahedron into hexagons.

Part of a tessellation of space using rhombo-hexagonal dodecahedra

  • Weisstein, Eric W. "Space-filling polyhedron". MathWorld.
  • Weisstein, Eric W. "Elongated dodecahedron". MathWorld.
  • [1] Uniform space-filling using only rhombo-hexagonal dodecahedra
  • VRML Model [2]

References