Elongated dodecahedron: Difference between revisions
Appearance
Content deleted Content added
m r2.7.2+) (Robot: Adding sl:Rombo-šeststrani dodekaeder |
sym |
||
Line 6: | Line 6: | ||
Vertex_Count=18| |
Vertex_Count=18| |
||
Vertex_List=(8) 4.6.6<BR>(8) 4.4.6<BR>(2) 4.4.4.4| |
Vertex_List=(8) 4.6.6<BR>(8) 4.4.6<BR>(2) 4.4.4.4| |
||
Symmetry_Group=[[Dihedral symmetry in three dimensions|D<sub>4h</sub>]]| |
Symmetry_Group=[[Dihedral symmetry in three dimensions|D<sub>4h</sub>]], [4,2], (*422), order 16| |
||
Rotation_Group=D<sub>4</sub>, [4,2]<sup>+</sup>, (422), order 8| |
|||
Dual=-| |
Dual=-| |
||
Property_List=[[convex set|convex]], [[Zonohedron]] |
Property_List=[[convex set|convex]], [[Zonohedron]] |
Revision as of 20:05, 5 October 2012
Elongated dodecahedron | |
---|---|
Type | Dodecahedron |
Faces | 8 rhombi 4 hexagons |
Edges | 28 |
Vertices | 18 |
Vertex configuration | (8) 4.6.6 (8) 4.4.6 (2) 4.4.4.4 |
Symmetry group | D4h, [4,2], (*422), order 16 |
Rotation group | D4, [4,2]+, (422), order 8 |
Dual polyhedron | - |
Properties | convex, Zonohedron |
The rhombo-hexagonal dodecahedron is a convex polyhedron with 8 rhombic and 4 equilateral hexagonal faces.
It is also called an elongated dodecahedron and extended rhombic dodecahedron because it is related to the rhombic dodecahedron by expanding four rhombic faces of the rhombic dodecahedron into hexagons.
- It can tesselate all space by translations.
- It is the Wigner-Seitz cell for certain body-centered tetragonal lattices.
External links
- Weisstein, Eric W. "Space-filling polyhedron". MathWorld.
- Weisstein, Eric W. "Elongated dodecahedron". MathWorld.
- [1] Uniform space-filling using only rhombo-hexagonal dodecahedra
- VRML Model [2]
References
- Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X. p169