Friedländer synthesis: Difference between revisions
m Format plain DOIs using AWB (8087) |
m WP:CHECKWIKI error 61 fix, References after punctuation per WP:REFPUNC and WP:PAIC using AWB (8459) |
||
Line 3: | Line 3: | ||
[[Image:Friedlaender Synthesis Scheme V.1.svg|center|450px|The Friedländer synthesis]] |
[[Image:Friedlaender Synthesis Scheme V.1.svg|center|450px|The Friedländer synthesis]] |
||
This reaction has been catalyzed by [[trifluoroacetic acid]]<ref>Shaabani, A.; Soleimani, E.; Badri, Z. ''[[Synth. Commun.]]'' '''2007''', ''37'', 629-635. ({{DOI|10.1080/00397910601055230}})</ref> |
This reaction has been catalyzed by [[trifluoroacetic acid]],<ref>Shaabani, A.; Soleimani, E.; Badri, Z. ''[[Synth. Commun.]]'' '''2007''', ''37'', 629-635. ({{DOI|10.1080/00397910601055230}})</ref> [[toluenesulfonic acid]],<ref>Jia, C.-S.; Zhang, Z.; Tu, S.-J.; Wang, G.-W. ''[[Org. Biomol. Chem.]]'' '''2006''', ''4'', 104-110.</ref> [[iodine]],<ref>Wu, J.; Xia, H.-G.; Gao, K. ''[[Org. Biomol. Chem.]]'' '''2006''', ''4'', 126-129.</ref> and [[Lewis acid]]s.<ref>Varala, R.; Enugala, R.; Adapa, S. R. ''[[Synthesis (journal)|Synthesis]]'' '''2006''', 3825-3830.</ref> |
||
Several reviews have been published.<ref>Cheng, C.-C.; Yan, S.-J. ''[[Org. React.]]'' '''1982''', ''28'', 37. {{doi|10.1002/0471264180.or028.02}}</ref><ref>Manske, R. H. ''[[Chem. Rev.]]'' '''1942''', ''30'', 113. (Review)</ref><ref>Bergstrom, F. W. ''[[Chem. Rev.]]'' '''1944''', ''35'', 77. (Review)</ref><ref>Cheng, C. C.; Yan, S. J. ''Org. React.'' '''1982''', ''28'', 37. (Review)</ref> |
Several reviews have been published.<ref>Cheng, C.-C.; Yan, S.-J. ''[[Org. React.]]'' '''1982''', ''28'', 37. {{doi|10.1002/0471264180.or028.02}}</ref><ref>Manske, R. H. ''[[Chem. Rev.]]'' '''1942''', ''30'', 113. (Review)</ref><ref>Bergstrom, F. W. ''[[Chem. Rev.]]'' '''1944''', ''35'', 77. (Review)</ref><ref>Cheng, C. C.; Yan, S. J. ''Org. React.'' '''1982''', ''28'', 37. (Review)</ref> |
||
==Mechanism== |
==Mechanism== |
||
Two viable [[reaction mechanism]]s exist for this reaction. In the first mechanism 2-amino substituted carbonyl compound '''1''' and carbonyl compound '''2''' react in a [[rate-limiting step]] to [[Aldol reaction|aldol]] adduct '''3'''. This intermediate loses water in an [[elimination reaction]] to [[Α,β-unsaturated carbonyl compound|unsaturated carbonyl compound]] '''4''' and then loses water again in [[imine]] formation to quinoline '''7'''. In the second mechanism the first step is [[Schiff base]] formation to '''5''' followed by Aldol reaction to '''6''' and elimination to '''7''' |
Two viable [[reaction mechanism]]s exist for this reaction. In the first mechanism 2-amino substituted carbonyl compound '''1''' and carbonyl compound '''2''' react in a [[rate-limiting step]] to [[Aldol reaction|aldol]] adduct '''3'''. This intermediate loses water in an [[elimination reaction]] to [[Α,β-unsaturated carbonyl compound|unsaturated carbonyl compound]] '''4''' and then loses water again in [[imine]] formation to quinoline '''7'''. In the second mechanism the first step is [[Schiff base]] formation to '''5''' followed by Aldol reaction to '''6''' and elimination to '''7'''.<ref>''Recent Advances in the Friedlander Reaction'' Jose Marco-Contelles, Elena Perez-Mayoral,Abdelouahid Samadi, Marıa do Carmo Carreiras, and Elena Soriano [[Chem. Rev.]] 2009 {{DOI|10.1021/cr800482c}}</ref> |
||
:[[Image:FriedlanderReactionMechanism.svg|Friedländer synthesis reaction mechanism]] |
:[[Image:FriedlanderReactionMechanism.svg|Friedländer synthesis reaction mechanism]] |
Revision as of 07:37, 12 October 2012
The Friedländer synthesis is the chemical reaction of 2-aminobenzaldehydes[1] with ketones to form quinoline derivatives.[2][3] It is named after German chemist Paul Friedländer (1857-1923).
This reaction has been catalyzed by trifluoroacetic acid,[4] toluenesulfonic acid,[5] iodine,[6] and Lewis acids.[7]
Several reviews have been published.[8][9][10][11]
Mechanism
Two viable reaction mechanisms exist for this reaction. In the first mechanism 2-amino substituted carbonyl compound 1 and carbonyl compound 2 react in a rate-limiting step to aldol adduct 3. This intermediate loses water in an elimination reaction to unsaturated carbonyl compound 4 and then loses water again in imine formation to quinoline 7. In the second mechanism the first step is Schiff base formation to 5 followed by Aldol reaction to 6 and elimination to 7.[12]
The Pfitzinger reaction and the Niementowski quinoline synthesis are variations.
References
- ^ Organic Syntheses, Coll. Vol. 3, p.56 (1955); Vol. 28, p.11 (1948). (Article)
- ^ Friedländer, P. Ber. 1882, 15, 2572.
- ^ Friedländer, P.; Gohring, C. F. Ber. 1883, 16, 1833.
- ^ Shaabani, A.; Soleimani, E.; Badri, Z. Synth. Commun. 2007, 37, 629-635. (doi:10.1080/00397910601055230)
- ^ Jia, C.-S.; Zhang, Z.; Tu, S.-J.; Wang, G.-W. Org. Biomol. Chem. 2006, 4, 104-110.
- ^ Wu, J.; Xia, H.-G.; Gao, K. Org. Biomol. Chem. 2006, 4, 126-129.
- ^ Varala, R.; Enugala, R.; Adapa, S. R. Synthesis 2006, 3825-3830.
- ^ Cheng, C.-C.; Yan, S.-J. Org. React. 1982, 28, 37. doi:10.1002/0471264180.or028.02
- ^ Manske, R. H. Chem. Rev. 1942, 30, 113. (Review)
- ^ Bergstrom, F. W. Chem. Rev. 1944, 35, 77. (Review)
- ^ Cheng, C. C.; Yan, S. J. Org. React. 1982, 28, 37. (Review)
- ^ Recent Advances in the Friedlander Reaction Jose Marco-Contelles, Elena Perez-Mayoral,Abdelouahid Samadi, Marıa do Carmo Carreiras, and Elena Soriano Chem. Rev. 2009 doi:10.1021/cr800482c