Jump to content

Ampicillin: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
^^James^^ (talk | contribs)
^^James^^ (talk | contribs)
screw it, that gets removed till someone can source it better. I think the section should be there, just needs a decent source.
Line 60: Line 60:
=== Effects on chloroplast division ===
=== Effects on chloroplast division ===
Ampicillin, like other [[beta-lactam|β-lactam]] antibiotics, not only blocks the division of bacteria, but also the division of [[chloroplast]]s of the [[Glaucophyte]]s (called cyanelles) and chloroplasts of the moss ''[[Physcomitrella patens]]'', a [[bryophyte]]. In contrast, it has no effect on the [[plastid]]s of the higher developed [[vascular plant]] ''Lycopersicon esculentum L.'' ([[tomato]]).<ref>Britta Kasten und [[Ralf Reski]] (1997): [[beta-lactam|β-lactam]] antibiotics inhibit chloroplast division in a moss (Physcomitrella patens) but not in tomato (Lycopersicon esculentum). Journal of [[Plant Physiology]] 150, 137-140. [http://cat.inist.fr/?aModele=afficheN&cpsidt=2640663]</ref>
Ampicillin, like other [[beta-lactam|β-lactam]] antibiotics, not only blocks the division of bacteria, but also the division of [[chloroplast]]s of the [[Glaucophyte]]s (called cyanelles) and chloroplasts of the moss ''[[Physcomitrella patens]]'', a [[bryophyte]]. In contrast, it has no effect on the [[plastid]]s of the higher developed [[vascular plant]] ''Lycopersicon esculentum L.'' ([[tomato]]).<ref>Britta Kasten und [[Ralf Reski]] (1997): [[beta-lactam|β-lactam]] antibiotics inhibit chloroplast division in a moss (Physcomitrella patens) but not in tomato (Lycopersicon esculentum). Journal of [[Plant Physiology]] 150, 137-140. [http://cat.inist.fr/?aModele=afficheN&cpsidt=2640663]</ref>

=== Spectrum of Bacterial Susceptibility and Resistance ===
[[Bacillus subtilis]], [[Enterococcus faecalis]], and [[Haemophilus influenzae]] (non-ESBL)species are generally susceptible to ampicillin,while [[Enterobacteriaceae]], [[Escherichia coli]] (ESBL), and [[Klebsiella oxytoca]] are resistant to ampicillin.In the meanwhile, some [[Aeromonas hydrophila]], [[Staphylococci]], [[Staphylococcus haemolyticus]] and [[Shigella flexneri]] have developed resistance to ampicillin to varying degrees.<ref>{{cite web|title=Ampicillin Sodium spectrum of bacterial susceptibility and Resistance|url=http://www.toku-e.com/Upload/Products/PDS/20120618002031.pdf |accessdate=1 May 2012}}</ref>{{Citation needed}}


==Application==
==Application==

Revision as of 08:50, 16 October 2012

Ampicillin
Clinical data
Trade namesPrincipen
AHFS/Drugs.comMonograph
MedlinePlusa685002
Pregnancy
category
Routes of
administration
Oral, intravenous
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability40% (oral)
Protein binding15 to 25%
Metabolism12 to 50%
Elimination half-lifeapprox 1 hour
Excretion75 to 85% renal
Identifiers
  • (2S,5R,6R)-6-([(2R)-2-amino-2-phenylacetyl]amino)
    -3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-
    carboxylic acid
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.000.645 Edit this at Wikidata
Chemical and physical data
FormulaC16H19N3O4S
Molar mass349.41 g·mol−1 g·mol−1
3D model (JSmol)
  • O=C(O)[C@@H]2N3C(=O)[C@@H](NC(=O)[C@@H](c1ccccc1)N)[C@H]3SC2(C)C
  • InChI=1S/C16H19N3O4S/c1-16(2)11(15(22)23)19-13(21)10(14(19)24-16)18-12(20)9(17)8-6-4-3-5-7-8/h3-7,9-11,14H,17H2,1-2H3,(H,18,20)(H,22,23)/t9-,10-,11+,14-/m1/s1 checkY
  • Key:AVKUERGKIZMTKX-NJBDSQKTSA-N checkY
  (verify)

Ampicillin is a beta-lactam antibiotic that is part of the aminopenicillin family and is roughly equivalent to its successor, amoxicillin in terms of spectrum and level of activity.[2] It can sometimes result in reactions that range in severity from a rash (in the case of patients that may unwittingly have mononucleosis) to potentially lethal allergic reactions such as anaphylaxis. However, as with other penicillin drugs, it is relatively non-toxic and adverse effects of a serious nature are encountered only rarely.

Mechanism of action

Belonging to the penicillin group of beta-lactam antibiotics, ampicillin is able to penetrate Gram-positive and some Gram-negative bacteria. It differs from penicillin only by the presence of an amino group. That amino group helps the drug penetrate the outer membrane of gram-negative bacteria.

Ampicillin acts as a competitive inhibitor of the enzyme transpeptidase, which is needed by bacteria to make their cell walls.[2] It inhibits the third and final stage of bacterial cell wall synthesis in binary fission, which ultimately leads to cell lysis. Ampicillin has received FDA approval for its mechanism of action.

Effects on chloroplast division

Ampicillin, like other β-lactam antibiotics, not only blocks the division of bacteria, but also the division of chloroplasts of the Glaucophytes (called cyanelles) and chloroplasts of the moss Physcomitrella patens, a bryophyte. In contrast, it has no effect on the plastids of the higher developed vascular plant Lycopersicon esculentum L. (tomato).[3]

Application

Ampicillin is closely related to amoxicillin, another type of penicillin, and both are used to treat urinary tract infections, otitis media, Haemophilus influenzae, salmonellosis and Listeria meningitis. It is used with flucloxacillin in the combination antibiotic co-fluampicil for empiric treatment of cellulitis; providing cover against Group A streptococcal infection whilst the flucloxacillin acts against the Staphylococcus aureus bacterium. Of concern is the number of bacteria that become resistant to Ampicillin necessitating combination therapy or use of other antibiotics.

All Pseudomonas and most strains of Klebsiella and Aerobacter are considered resistant.[4] Additionally, resistance to ampicillin is seen in enterobacter, citrobacter, serratia, indole-positive proteus species, and other hospital-acquired gram negative infections.[5]

An ampicillin resistance gene (abbreviated ampR) is commonly used as a selectable marker in routine biotechnology. Due to concerns over horizontal gene transfer to pathogenic organisms in the wild, the European Food Safety Authority restricts use of this gene (among other resistance genes) in commercial genetically modified organisms. The enzyme responsible for degrading ampicillin is called beta-lactamase, in reference to the beta-lactam structure of ampicillin and related drugs.

History

Ampicillin has been used extensively to treat bacterial infections since 1961. Until the introduction of ampicillin by the British company Beecham, penicillin therapies had only been effective against Gram-positive organisms such as staphylococci and streptococci. Ampicillin (originally branded as 'Penbritin') also demonstrated activity against Gram-negative organisms such as H. influenzae, coliforms and Proteus spp. Ampicillin was the first of a number of so-called broad spectrum penicillins subsequently introduced by Beecham.

References

  1. ^ "FDA-sourced list of all drugs with black box warnings (Use Download Full Results and View Query links.)". nctr-crs.fda.gov. FDA. Retrieved 22 October 2023.
  2. ^ a b AHFS DRUG INFORMATION 2006 (2006 ed.). American Society of Health-System Pharmacists. 2006.
  3. ^ Britta Kasten und Ralf Reski (1997): β-lactam antibiotics inhibit chloroplast division in a moss (Physcomitrella patens) but not in tomato (Lycopersicon esculentum). Journal of Plant Physiology 150, 137-140. [1]
  4. ^ Mosby's Drug Consult 2006 (16 ed.). Mosby, Inc. 2006.
  5. ^ Katzung, Bertram G. (2007). Basic and Clinical Pharmacology, 10th edition. New York, NY: McGraw Hill Medical. p. 733. ISBN 978-0-07-145153-6.