Order-7 square tiling: Difference between revisions
Appearance
Content deleted Content added
Line 3: | Line 3: | ||
== Related polyhedra and tiling == |
== Related polyhedra and tiling == |
||
⚫ | |||
This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (4<sup>n</sup>). |
This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (4<sup>n</sup>). |
||
{{Regular square tiling table}} |
|||
{| class="wikitable" |
|||
|- align=center |
|||
|[[Image:Uniform polyhedron-43-t0.png|100px]]<BR>[[Cube|{4,3}]]<BR>{{CDD|node_1|4|node|3|node}} |
|||
|[[Image:Uniform tiling 44-t0.png|100px]]<BR>[[Square tiling|{4,4}]]<BR>{{CDD|node_1|4|node|4|node}} |
|||
|[[Image:Uniform tiling 45-t0.png|100px]]<BR>[[Order-5 square tiling|{4,5}]]<BR>{{CDD|node_1|4|node|5|node}} |
|||
|[[Image:Uniform tiling 46-t0.png|100px]]<BR>[[Order-6 square tiling|{4,6}]]<BR>{{CDD|node_1|4|node|6|node}} |
|||
|- |
|||
|[[Image:Uniform tiling 47-t0.png|100px]]<BR>[[Order-7 square tiling|{4,7}]]<BR>{{CDD|node_1|4|node|7|node}} |
|||
|[[Image:Uniform tiling 48-t0.png|100px]]<BR>[[Order-8 square tiling|{4,8}]]<BR>{{CDD|node_1|4|node|8|node}} |
|||
|... |
|||
|[[File:H2 tiling 24i-4.png|100px]]<BR>[[Infinite-order square tiling|{4,∞}]]<BR>{{CDD|node_1|4|node|infin|node}} |
|||
⚫ | |||
|} |
|||
==References== |
==References== |
Revision as of 21:59, 9 March 2013
Order-7 square tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | 47 |
Schläfli symbol | {4,7} |
Wythoff symbol | 7 | 4 2 |
Coxeter diagram | |
Symmetry group | [7,4], (*742) |
Dual | Order-4 heptagonal tiling |
Properties | Vertex-transitive, edge-transitive, face-transitive |
In geometry, the order-7 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,7}.
Related polyhedra and tiling
This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (4n).
*n42 symmetry mutation of regular tilings: {4,n} | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Spherical | Euclidean | Compact hyperbolic | Paracompact | ||||||||
{4,3} |
{4,4} |
{4,5} |
{4,6} |
{4,7} |
{4,8}... |
{4,∞} |
Uniform heptagonal/square tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [7,4], (*742) | [7,4]+, (742) | [7+,4], (7*2) | [7,4,1+], (*772) | ||||||||
{7,4} | t{7,4} | r{7,4} | 2t{7,4}=t{4,7} | 2r{7,4}={4,7} | rr{7,4} | tr{7,4} | sr{7,4} | s{7,4} | h{4,7} | ||
Uniform duals | |||||||||||
V74 | V4.14.14 | V4.7.4.7 | V7.8.8 | V47 | V4.4.7.4 | V4.8.14 | V3.3.4.3.7 | V3.3.7.3.7 | V77 |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.