Jump to content

Suspension bridge: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 168: Line 168:
== Gallery ==
== Gallery ==
<gallery>
<gallery>
File:puppy-dog-5.jpg|The strangest suspension bridge in the world.
File:OS-Most-na-dravi.jpg|Suspension pedestrian bridge in Osijek, Croatia is one of the symbols of Osijek.
File:OS-Most-na-dravi.jpg|Suspension pedestrian bridge in Osijek, Croatia is one of the symbols of Osijek.
File:Old and new Steubenville bridges.jpg|Suspension bridge (foreground) adjacent to a [[trestle bridge]] in [[Steubenville, Ohio]].
File:Old and new Steubenville bridges.jpg|Suspension bridge (foreground) adjacent to a [[trestle bridge]] in [[Steubenville, Ohio]].

Revision as of 15:47, 24 April 2013

Suspension bridge
Clifton Suspension Bridge in Bristol, UK (1864)
Clifton Suspension Bridge in Bristol, UK (1864)
AncestorSimple suspension bridge
RelatedUnderspanned suspension bridge; see also cable stayed bridge and through arch bridge
DescendantSelf-anchored suspension bridge
CarriesPedestrians, bicycles, livestock, automobiles, trucks, light rail
Span rangeMedium to long
MaterialSteel rope, multiple steel wire strand cables or forged or cast chain links
MovableNo
Design effortmedium
Falsework requiredNo

A suspension bridge is a type of bridge in which the deck (the load-bearing portion) is hung below suspension cables on vertical suspenders. Outside Tibet and Bhutan, where the first examples of this type of bridge were built in the 15th century, this type of bridge dates from the early 19th century.[1][2] Bridges without vertical suspenders have a long history in many mountainous parts of the world.

This type of bridge has cables suspended between towers, plus vertical suspender cables that carry the weight of the deck below, upon which traffic crosses. This arrangement allows the deck to be level or to arc upward for additional clearance. Like other suspension bridge types, this type often is constructed without falsework.

The suspension cables must be anchored at each end of the bridge, since any load applied to the bridge is transformed into a tension in these main cables. The main cables continue beyond the pillars to deck-level supports, and further continue to connections with anchors in the ground. The roadway is supported by vertical suspender cables or rods, called hangers. In some circumstances the towers may sit on a bluff or canyon edge where the road may proceed directly to the main span, otherwise the bridge will usually have two smaller spans, running between either pair of pillars and the highway, which may be supported by suspender cables or may use a truss bridge to make this connection. In the latter case there will be very little arc in the outboard main cables.

History

The earliest suspension bridges were ropes slung across a chasm, with a deck possibly at the same level or hung below the ropes so that the rope has a catenary shape.

Early precursor

The Tibetan saint and bridge-builder Thangtong Gyalpo originated the use of iron chains in his version of early suspension bridges. In 1433, Gyalpo built eight bridges in eastern Bhutan. The only surviving chain-linked bridge of Gyalpo's was the Thangtong Gyalpo Bridge in Duksum en route to Trashi Yangtse, which was finally washed away in 2004.[3] Gyalpo's iron chain bridges did not include a suspended deck bridge which is the standard on all modern suspension bridges today. Instead, both the railing and the walking layer of Gyalpo's bridges used wires. The stress points that carried the screed were reinforced by the iron chains. Before the use of iron chains it is thought that Gyalpo used ropes from twisted willows or yak skins.[4]

First suspension bridges

The first design for a bridge resembling the modern suspension bridge is attributed to Venetian polymath Fausto Veranzio, whose 1595 book Machinae Novae included drawings both for a timber and rope suspension bridge, and a hybrid suspension and cable-stayed bridge using iron chains (see gallery below).

The first American suspension bridge was the Jacob's Creek Bridge, built by engineer and inventor James Finley in Westmoreland County, Pennsylvania, in 1801.[5] Finley's bridge was the first to incorporate all of the necessary components of a suspension bridge, including a suspended deck which hung by trusses. In 1808, Finley had patented his suspension bridge and by 1810, he published his design in a Philadelphia journal entitled The Port Folio.[6]

Early British chain bridges included the Dryburgh Abbey Bridge (1817) and 137 m Union Bridge (1820), with spans rapidly increasing to 176 m with the Menai Suspension Bridge (1826). The Clifton Suspension Bridge shown above (designed in 1831, completed in 1864 with a 214 m central span) is one of the longest of the parabolic arc chain type.

Wire-cable

The first wire-cable suspension bridge was the Spider Bridge at Falls of Schuylkill (1816), a modest and temporary footbridge built following the collapse of James Finley's Chain Bridge at Falls of Schuylkill (1808), shown above. The footbridge's span was 124 m, although its deck was only 0.45 m wide.

Development of wire-cable suspension bridges dates to the temporary simple suspension bridge at Annonay built by Marc Seguin and his brothers in 1822. It spanned only 18 m.[7] The first permanent wire cable suspension bridge was Guillaume Henri Dufour's Saint Antoine Bridge in Geneva of 1823, with two 40 m spans.[7] The first with cables assembled in mid-air in the modern method was Joseph Chaley's Grand Pont Suspendu in Fribourg, in 1834.[7]

In the United States, the first major wire-cable suspension bridge was the Wire Bridge at Fairmount in Philadelphia, Pennsylvania. Designed by Charles Ellet, Jr. and completed in 1842, it had a span of 109 m. Ellet's Niagara Falls Suspension Bridge (1847–48) was abandoned before completion. It was used as scaffolding for John A. Roebling's double decker railroad and carriage bridge (1855).

The Otto Beit Bridge (1938–39) was the first modern suspension bridge outside the United States built with parallel wire cables.[8]

Structural behavior

Structural analysis

The main forces in a suspension bridge of any type are tension in the cables and compression in the pillars. Since almost all the force on the pillars is vertically downwards and they are also stabilized by the main cables, the pillars can be made quite slender, as on the Severn Bridge, on the Wales-England border.

The slender lines of the Severn Bridge

In a suspended deck bridge, cables suspended via towers hold up the road deck. The weight is transferred by the cables to the towers, which in turn transfer the weight to the ground.

Comparison of a catenary (black dotted curve) and a parabola (red solid curve) with the same span and sag. The catenary represents the profile of a simple suspension bridge, or the cable of a suspended-deck suspension bridge on which its deck and hangers have negligible mass compared to its cable. The parabola represents the profile of the cable of a suspended-deck suspension bridge on which its cable and hangers have negligible mass compared to its deck. The profile of the cable of a real suspension bridge with the same span and sag lies between the two curves.

Assuming a negligible weight as compared to the weight of the deck and vehicles being supported, the main cables of a suspension bridge will form a parabola (very similar to a catenary, the form the unloaded cables take before the deck is added). One can see the shape from the constant increase of the gradient of the cable with linear (deck) distance, this increase in gradient at each connection with the deck providing a net upward support force. Combined with the relatively simple constraints placed upon the actual deck, this makes the suspension bridge much simpler to design and analyze than a cable-stayed bridge, where the deck is in compression.

Advantages over other bridge types

A suspension bridge can be made out of simple materials such as wood and common wire rope.
  • Longer main spans are achievable than with any other type of bridge
  • Less material may be required than other bridge types, even at spans they can achieve, leading to a reduced construction cost
  • Except for installation of the initial temporary cables, little or no access from below is required during construction, for example allowing a waterway to remain open while the bridge is built above
  • May be better to withstand earthquake movements than heavier and more rigid bridges

Disadvantages compared with other bridge types

  • Considerable stiffness or aerodynamic profiling may be required to prevent the bridge deck vibrating under high winds
  • The relatively low deck stiffness compared to other (non-suspension) types of bridges makes it more difficult to carry heavy rail traffic where high concentrated live loads occur
  • Some access below may be required during construction, to lift the initial cables or to lift deck units. This access can often be avoided in cable-stayed bridge construction

Variations

Underspanned suspension bridge

Micklewood Bridge as illustrated by Charles Drewry, 1832
Eyebar chain cables of Clifton Suspension Bridge
Wire strand cables of Golden Gate Bridge
The Yichang Bridge, a plate deck suspension bridge, over the Yangtze River in China

In an underspanned suspension bridge, the main cables hang entirely below the bridge deck, but are still anchored into the ground in a similar way to the conventional type. Very few bridges of this nature have been built, as the deck is inherently less stable than when suspended below the cables. Examples include the Pont des Bergues of 1834 designed by Guillaume Henri Dufour;[7] James Smith's Micklewood Bridge;[9] and a proposal by Robert Stevenson for a bridge over the River Almond near Edinburgh.[9]

Roebling's Delaware Aqueduct (begun 1847) consists of three sections supported by cables. The timber structure essentially hides the cables; and from a quick view, it is not immediately apparent that it is even a suspension bridge.

Suspension cable types

The main suspension cable in older bridges was often made from chain or linked bars, but modern bridge cables are made from multiple strands of wire. This contributes greater redundancy; a few flawed strands in the hundreds used pose very little threat, whereas a single bad link or eyebar can cause failure of the entire bridge. (The failure of a single eyebar was found to be the cause of the collapse of the Silver Bridge over the Ohio River). Another reason is that as spans increased, engineers were unable to lift larger chains into position, whereas wire strand cables can be largely prepared in mid-air from a temporary walkway.

Deck structure types

Most suspension bridges have open truss structures to support the roadbed, particularly owing to the unfavorable effects of using plate girders, discovered from the Tacoma Narrows Bridge (1940) bridge collapse. Recent[when?] developments in bridge aerodynamics have allowed the re-introduction of plate structures. In the picture of the Yichang Bridge, note the very sharp entry edge and sloping undergirders in the suspension bridge shown. This enables this type of construction to be used without the danger of vortex shedding and consequent aeroelastic effects, such as those that destroyed the original Tacoma Narrows bridge.

Forces acting on suspension bridges

Three kinds of forces operate on any bridge: the dead load, the live load, and the dynamic load. Dead load refers to the weight of the bridge itself. Like any other structure, a bridge has a tendency to collapse simply because of the gravitational forces acting on the materials of which the bridge is made. Live load refers to traffic that moves across the bridge as well as normal environmental factors such as changes in temperature, precipitation, and winds. Dynamic load refers to environmental factors that go beyond normal weather conditions, factors such as sudden gusts of wind and earthquakes. All three factors must be taken into consideration when building a bridge.

Use other than road and rail

Cable-suspended footbridge at Dallas Fort Worth Airport Terminal D

The principles of suspension used on the large scale may also appear in contexts less dramatic than road or rail bridges. Light cable suspension may prove less expensive and seem more elegant for a footbridge than strong girder supports. Where such a bridge spans a gap between two buildings, there is no need to construct special towers, as the buildings can anchor the cables. Cable suspension may also be augmented by the inherent stiffness of a structure that has much in common with a tubular bridge.

Construction sequence (wire strand cable type)

New Little Belt suspension bridge, 1970 Denmark
One of the main cable saddles atop the Golden Gate Bridge.
Manhattan Bridge in New York City with deck under construction from the towers outward.
Suspender cables and suspender cable band on the Golden Gate Bridge in San Francisco. Main cable diameter is 36 inches, and suspender cable diameter is 312 inches.
Lions' Gate Bridge with deck under construction from the span's center

Typical suspension bridges are constructed using a sequence generally described as follows. Depending on length and size, construction may take anywhere between a year and a half (construction on the original Tacoma Narrows Bridge took only 19 months) to as many as a decade (the Akashi-Kaikyō Bridge's construction began in May 1986 and was opened in May, 1998 – a total of twelve years).

  1. Where the towers are founded on underwater piers, caissons are sunk and any soft bottom is excavated for a foundation. If the bedrock is too deep to be exposed by excavation or the sinking of a caisson, pilings are driven to the bedrock or into overlying hard soil, or a large concrete pad to distribute the weight over less resistant soil may be constructed, first preparing the surface with a bed of compacted gravel. (Such a pad footing can also accommodate the movements of an active fault, and this has been implemented on the foundations of the cable-stayed Rio-Antirio bridge. The piers are then extended above water level, where they are capped with pedestal bases for the towers.
  2. Where the towers are founded on dry land, deep foundation excavation or pilings are used.
  3. From the tower foundation, towers of single or multiple columns are erected using high-strength reinforced concrete, stonework, or steel. Concrete is used most frequently in modern suspension bridge construction due to the high cost of steel.
  4. Large devices called saddles, which will carry the main suspension cables, are positioned atop the towers. Typically of cast steel, they can also be manufactured using riveted forms, and are equipped with rollers to allow the main cables to shift under construction and normal loads.
  5. Anchorages are constructed, usually in tandem with the towers, to resist the tension of the cables and form as the main anchor system for the entire structure. These are usually anchored in good quality rock, but may consist of massive reinforced concrete deadweights within an excavation. The anchorage structure will have multiple protruding open eyebolts enclosed within a secure space.
  6. Temporary suspended walkways, called catwalks, are then erected using a set of guide wires hoisted into place via winches positioned atop the towers. These catwalks follow the curve set by bridge designers for the main cables, in a path mathematically described as a catenary arc. Typical catwalks are usually between eight and ten feet wide, and are constructed using wire grate and wood slats.
  7. Gantries are placed upon the catwalks, which will support the main cable spinning reels. Then, cables attached to winches are installed, and in turn, the main cable spinning devices are installed.
  8. High strength wire (typically 4 or 6 gauge galvanized steel wire), is pulled in a loop by pulleys on the traveler, with one end affixed at an anchorage. When the traveler reaches the opposite anchorage the loop is placed over an open anchor eyebar. Along the catwalk, workers also pull the cable wires to their desired tension. This continues until a bundle, called a "cable strand" is completed, and temporarily bundled using stainless steel wire. This process is repeated until the final cable strand is completed. Workers then remove the individual wraps on the cable strands (during the spinning process, the shape of the main cable closely resembles a hexagon), and then the entire cable is then compressed by a traveling hydraulic press into a closely packed cylinder and tightly wrapped with additional wire to form the final circular cross section. The wire used in suspension bridge construction is a galvanized steel wire that has been coated with corrosion inhibitors.
  9. At specific points along the main cable (each being the exact distance horizontally in relation to the next) devices called "cable bands" are installed to carry steel wire ropes called Suspender cables. Each suspender cable is engineered and cut to precise lengths, and are looped over the cable bands. In some bridges, where the towers are close to or on the shore, the suspender cables may be applied only to the central span. Early suspender cables were fitted with zinc jewels and a set of steel washers, which formed the support for the deck. Modern suspender cables carry a shackle-type fitting.
  10. Special lifting hoists attached to the suspenders or from the main cables are used to lift prefabricated sections of bridge deck to the proper level, provided that the local conditions allow the sections to be carried below the bridge by barge or other means. Otherwise, a traveling cantilever derrick may be used to extend the deck one section at a time starting from the towers and working outward. If the addition of the deck structure extends from the towers the finished portions of the deck will pitch upward rather sharply, as there is no downward force in the center of the span. Upon completion of the deck the added load will pull the main cables into an arc mathematically described as a parabola, while the arc of the deck will be as the designer intended – usually a gentle upward arc for added clearance if over a shipping channel, or flat in other cases such as a span over a canyon. Arched suspension spans also give the structure more rigidity and strength.
  11. With completion of the primary structure various details such as lighting, handrails, finish painting and paving are installed or completed.

The longest suspension bridge spans in the world

The Akashi-Kaikyo Bridge, world's longest mainspan.

Suspension bridges are typically ranked by the length of their main span. These are the ten bridges with the longest spans, followed by the length of the span and the year the bridge opened for traffic:

  1. Akashi Kaikyō Bridge (Japan), 1991 m – 1998
  2. Xihoumen Bridge (China), 1650 m – 2009
  3. Great Belt Bridge (Denmark), 1624 m – 1998
  4. Yi Sun-sin bridge (South Korea), 1545 m – 2012
  5. Runyang Bridge (China), 1490 m – 2005
  6. Humber Bridge (England, United Kingdom), 1410 m – 1981 (longest span from 1981 until 1998)
  7. Jiangyin Suspension Bridge (China), 1385 m – 1997
  8. Tsing Ma Bridge (Hong Kong, China), 1377 m – 1997 (longest span with both road and metro)
  9. Verrazano-Narrows Bridge (USA), 1298 m – 1964 (longest span from 1964 until 1981)
  10. Golden Gate Bridge (USA), 1280 m – 1937 (longest span from 1937 until 1964)

Other suspended-deck suspension bridges

(Chronological)

Notable collapsed suspended-deck suspension bridges

  • Silver Bridge, Point Pleasant, West Virginia – Eyebar chain highway bridge, built in 1928, that collapsed in late 1967, killing forty-six people.
  • Tacoma Narrows Bridge, (USA), 853 m – 1940. The Tacoma Narrows bridge was vulnerable to structural vibration in sustained and moderately strong winds due to its plate-girder deck structure. Wind caused a phenomenon called aeroelastic fluttering that led to its collapse only months after completion. The collapse was captured on film.

See also

References

  1. ^ Chakzampa Thangtong Gyalpo – Architect, Philosopher and Iron Chain Bridge Builder by Manfred Gerner. Thimphu: Center for Bhutan Studies 2007. ISBN 99936-14-39-4
  2. ^ Lhasa and Its Mysteries by Lawrence Austine Waddell, 1905, p.313
  3. ^ Bhutan. Lonely Planet. 2007. ISBN 978-1-74059-529-2.
  4. ^ "Chakzampa Thangtong Gyalpo" (PDF). Centre for Bhutan Studies. p. 61.
  5. ^ "Iron Wire of the Wheeling Suspension Bridge". Smithsonian Museum Conservation Institute.
  6. ^ Bridges: Three Thousand Years of Defying Nature. MBI Publishing Company. 12 November 2001. ISBN 978-0-7603-1234-6.
  7. ^ a b c d Peters, Tom F. (1987). Transitions in Engineering: [[Guillaume Henri Dufour]] and the Early 19th Century Cable Suspension Bridges. Birkhauser. ISBN 3-7643-1929-1. {{cite book}}: URL–wikilink conflict (help)
  8. ^ Cleveland Bridge Company (UK) Web site Retrieved 21 February 2007, includes image of the bridge.
  9. ^ a b Drewry, Charles Stewart (1832). A Memoir of Suspension Bridges: Comprising The History Of Their Origin And Progress. London: Longman, Rees, Orme, Brown, Green & Longman. Retrieved 13 June 2009.
  10. ^ DRPA :: Delaware River Port Authority
  11. ^ McGloin, Bernard. "Symphonies in Steel: Bay Bridge and the Golden Gate". Virtual Museum of the City of San Francisco. Retrieved 12 January 2008.