Jump to content

Taxonomy: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m include "discuss" parameter
Line 32: Line 32:
==Is-a and Has-a relationships==
==Is-a and Has-a relationships==
{{expand section|date=April 2013}}
{{expand section|date=April 2013}}
<blockquote>Many systems for representing knowledge can be considered semantic networks largely because they feature the notion of an explicit taxonomic hierarchy, a tree or lattice-like structure for categorizing classes of things in the world being represented. ... Early in the history of [[Semantic network|semantic nets]], researchers observed that much representation of the world was concerned with the conceptual relations expressed in English sentences such as "John is a bachelor" and "A dog is a domesticated carnivorous mammal." That is, two predominant forms of statements handled by [[Knowledge representation and reasoning|AI knowledge-representation]] systems were the [[Predicate (mathematical logic)|predication]], expressing that an individual (e.g., John) was of a certain type (e.g., a bachelor), and the universally quantified [[Indicative conditional|conditional]], expressing that one type (e.g., dog) was a subtype of another (e.g., mammal).<ref name=Brachman>[[Ronald J. Brachman]]; [http://dblp.uni-trier.de/rec/bibtex/journals/computer/Brachman83 What IS-A is and isn't. An Analysis of Taxonomic Links in Semantic Networks]. IEEE Computer, 16 (10); October 1983</ref></blockquote>
<blockquote>Many systems for representing knowledge can be considered semantic networks largely because they feature the notion of an explicit taxonomic hierarchy, a tree or lattice-like structure for categorizing classes of things in the world being represented. ... Early in the history of [[Semantic network|semantic nets]], researchers observed that much representation of the world was concerned with the conceptual relations expressed in English sentences such as "John is a bachelor" and "A dog is a domesticated carnivorous mammal." That is, two predominant forms of statements handled by [[Knowledge representation and reasoning|AI knowledge-representation]] systems were the [[Predicate (mathematical logic)|predication]], expressing that an individual (e.g., John) was of a certain type (e.g., a bachelor), and the universally quantified [[Indicative conditional|conditional]], expressing that one type (e.g., dog) was a subtype of another (e.g., mammal).<ref name=Brachman>[[Ronald J. Brachman]]; [http://dblp.uni-trier.de/rec/bibtex/journals/computer/Brachman83 What IS-A is and isn't. An Analysis of Taxonomic Links in Semantic Networks]. IEEE Computer, 16 (10); October 1983.</ref></blockquote>


==See also==
==See also==

Revision as of 14:26, 4 May 2013

Taxonomy is the practice and science of classification. The word is also used as a count noun: a taxonomy, or taxonomic scheme, is a particular classification. The word finds its roots in the Greek Template:Polytonic, taxis (meaning 'order', 'arrangement') and Template:Polytonic, nomos ('law' or 'science'). Originally taxonomy referred only to the classifying of organisms or a particular classification of organisms.[citation needed] In a wider, more general sense, it may refer to a classification of things or concepts, as well as to the principles underlying such a classification. Taxonomy is different from meronomy which is dealing with the classification of parts of a whole.

Many taxonomies have a hierarchical structure, but this is not a requirement. Taxonomy uses taxonomic units, known as taxa (singular taxon).

Applications

Almost anything—animate objects, inanimate objects, places, concepts, events, properties, and relationships—may then be classified according to some taxonomic scheme. Wikipedia categories illustrate a taxonomy.[1] and a full taxonomy of Wikipedia categories can be extracted by automatic means.[2] Recently, it has been shown that a manually-constructed taxonomy, such as that of computational lexicons like WordNet, can be used to improve and restructure the Wikipedia category taxonomy.[3]

In an even wider sense, the term taxonomy could also be applied to relationship schemes other than parent-child hierarchies, such as network structures with other types of relationships. Taxonomies may then include single children with multi-parents, for example, "Car" might appear with both parents "Vehicle" and "Steel Mechanisms"; to some however, this merely means that 'car' is a part of several different taxonomies.[4] A taxonomy might also be a simple organization of kinds of things into groups, or even an alphabetical list. However, the term vocabulary is more appropriate for such a list. In current usage within Knowledge Management, taxonomies are considered narrower than ontologies since ontologies apply a larger variety of relation types.[5]

Mathematically, a hierarchical taxonomy is a tree structure of classifications for a given set of objects. It is also named Containment hierarchy. At the top of this structure is a single classification, the root node, that applies to all objects. Nodes below this root are more specific classifications that apply to subsets of the total set of classified objects. The progress of reasoning proceeds from the general to the more specific. In scientific taxonomies, a conflative term is always a polyseme.[6]

In contrast, in a context of legal terminology, an open-ended contextual taxonomy—a taxonomy holding only with respect to a specific context. In scenarios taken from the legal domain, a formal account of the open-texture of legal terms is modeled, which suggests varying notions of the "core" and "penumbra" of the meanings of a concept. The progress of reasoning proceeds from the specific to the more general.[7]

Taxonomy and mental classification

Anthropologists have observed that taxonomies are generally embedded in local cultural and social systems, and serve various social functions. Perhaps the most well-known and influential study of folk taxonomies is Émile Durkheim's The Elementary Forms of Religious Life. A more recent treatment of folk taxonomies (including the results of several decades of empirical research) and the discussion of their relation to the scientific taxonomy can be found in Scott Atran's Cognitive Foundations of Natural History.

In the seventeenth century the German mathematician and philosopher Gottfried Leibniz, following the work of the thirteenth-century Majorcan philosopher Ramon Llull on his Ars generalis ultima, a system for procedurally generating concepts by combining a fixed set of ideas, sought to develop an alphabet of human thought. Leibniz intended his characteristica universalis to be an "algebra" capable of expressing all conceptual thought. The concept of creating such a "universal language" was frequently examined in the seventeenth century, also notably by the English philosopher John Wilkins in his work An Essay towards a Real Character and a Philosophical Language (1668), from which the classification scheme in Roget's Thesaurus ultimately derives.

Non-scientific taxonomies

Other taxonomies, such as those analyzed by Durkheim and Lévi-Strauss, are called folk taxonomies or common names to distinguish them from scientific taxonomies that concentrate on evolutionarily determined phylogenetic relationships instead of subjective similarity in habitus and habits. Though phenetics also emphasises observable similarity, it does rely on quantitative analysis to reflect probable evolutionary relationships of lineages and not arbitrary similarities of form taxa.

Folk taxonomies of organisms have been found in large part to agree with scientific classification, at least for the larger and more obvious species, which means that it is not the case that folk taxonomies are based purely on utilitarian characteristics.[8]

The neologism folksonomy does not mean the same as "folk taxonomy" in spite of being a portmanteau of the two words. "Fauxonomy" (from French faux, "false") is a pejorative neologism lampooning folk taxonomies for their lack of agreement with scientific findings. Baraminology is a taxonomy used in creation science which in classifying form taxa resembles folk taxonomies.

In business the expression "enterprise taxonomy" describes any specialist form of taxonomy used within a given organization; for example a classification of trees as "Type A", "Type B" and "Type C" by which a particular lumber company categorises log shipments.

Is-a and Has-a relationships

Many systems for representing knowledge can be considered semantic networks largely because they feature the notion of an explicit taxonomic hierarchy, a tree or lattice-like structure for categorizing classes of things in the world being represented. ... Early in the history of semantic nets, researchers observed that much representation of the world was concerned with the conceptual relations expressed in English sentences such as "John is a bachelor" and "A dog is a domesticated carnivorous mammal." That is, two predominant forms of statements handled by AI knowledge-representation systems were the predication, expressing that an individual (e.g., John) was of a certain type (e.g., a bachelor), and the universally quantified conditional, expressing that one type (e.g., dog) was a subtype of another (e.g., mammal).[9]

See also

Notes

  1. ^ Zirn, Cäcilia, Vivi Nastase and Michael Strube. 2008. "Distinguishing Between Instances and Classes in the Wikipedia Taxonomy" (video lecture). 5th Annual European Semantic Web Conference (ESWC 2008).
  2. ^ S. Ponzetto and M. Strube. 2007. "Deriving a large scale taxonomy from Wikipedia". Proc. of the 22nd Conference on the Advancement of Artificial Intelligence, Vancouver, B.C., Canada, pp. 1440-1445.
  3. ^ S. Ponzetto, R. Navigli. 2009. "Large-Scale Taxonomy Mapping for Restructuring and Integrating Wikipedia". Proc. of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), Pasadena, California, pp. 2083-2088.
  4. ^ Jackson, Joab. "Taxonomy’s not just design, it’s an art," Government Computer News (Washington, D.C.). September 2, 2004.
  5. ^ Suryanto, Hendra and Paul Compton. "Learning classification taxonomies from a classification knowledge based system." University of Karlsruhe; "Defining 'Taxonomy'," Straights Knowledge website.
  6. ^ Malone, Joseph L. (1988). The Science of Linguistics in the Art of Translation: Some Tools from Linguistics for the Analysis and Practice of Translation, p. 112.
  7. ^ Grossi, Davide, Frank Dignum and John-Jules Charles Meyer. (2005). "Contextual Taxonomies" in Computational Logic in Multi-Agent Systems, pp. 33-51.
  8. ^ Kenneth Boulding, Elias Khalil (2002). Evolution, Order and Complexity. Routledge. ISBN 9780203013151. p. 9
  9. ^ Ronald J. Brachman; What IS-A is and isn't. An Analysis of Taxonomic Links in Semantic Networks. IEEE Computer, 16 (10); October 1983.

References

  • Atran, S. (1993) Cognitive Foundations of Natural History: Towards an Anthropology of Science. Cambridge: Cambridge University Press. 10-ISBN 0521438713 13-ISBN

9780521438711